SparkSQL 开窗函数
开窗函数能在每行的最后一行都显示聚合函数的结果,所以聚合函数可以用作开窗函数
聚合函数和开窗函数
聚合函数是将多行变成一行,如果要显示其他列,必须将列加入group by
开窗函数是将一行变成多行,将所有的信息显示出来
开窗函数
聚合开窗函数
聚合函数 over(partition by子句)
over关键字将聚合函数当作聚合开窗函数
SQL标准允许所有的聚合函数用作聚合开窗函数
示例:
// spark.sql("select id, name, age, count(name) from person").show 报错
spark.sql("select id, name, age, count(name)over() sum from person").show
/*
* +---+----+---+---+
| id|name|age|sum|
+---+----+---+---+
| 1| jx| 20| 6|
| 2| zx| 21| 6|
| 3| wz| 33| 6|
| 4| qw| 11| 6|
| 5| aa| 22| 6|
| 6| aq| 45| 6|
+---+----+---+---+
*
* */
over后面的括号还可以改变聚合函数的窗口范围
如果over后面的括号为空,则开窗函数会对所有行进行聚合运算
over后面的括号里可以用partition by 来定义行的分区来进行聚合运算
partition by进行分区之后,计算当前分区的聚合计算的结果
spark.sql("select id, name, age, area_id, count(name)over(partition by area_id) sum from person").show
/*
+---+----+---+-------+---+
| id|name|age|area_id|sum|
+---+----+---+-------+---+
| 1| jx| 20| 1| 3|
| 2| zx| 21| 1| 3|
| 3| wz| 33| 1| 3|
| 5| aa| 22| 3| 2|
| 6| aq| 45| 3| 2|
| 4| qw| 11| 2| 1|
+---+----+---+-------+---+
*
* */
排序开窗函数
ROW_NUMBER顺序排序
row_number() over(order by score)
排序开窗函数中使用partition by 需要放置在order by之前
实例
spark.sql("select id, name, age, area_id, row_number() over(order by age) rank from person").show
spark.sql("select id, name, age, area_id, row_number() over(partition by area_id order by age) rank from person").show
/*
+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
| 4| qw| 11| 2| 1|
| 1| jx| 20| 1| 2|
| 2| zx| 21| 1| 3|
| 5| aa| 22| 3| 4|
| 3| wz| 33| 1| 5|
| 6| aq| 45| 3| 6|
+---+----+---+-------+----+
+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
| 1| jx| 20| 1| 1|
| 2| zx| 21| 1| 2|
| 3| wz| 33| 1| 3|
| 5| aa| 22| 3| 1|
| 6| aq| 45| 3| 2|
| 4| qw| 11| 2| 1|
+---+----+---+-------+----+
*
* */
RANK跳跃排序
rank() over(order by)
使用该函数排序求出来的结果可以并列
示例
spark.sql("select id, name, age, area_id, rank() over(order by age) rank from person").show
spark.sql("select id, name, age, area_id, rank() over(partition by area_id order by age) rank from person").show
/*
+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
| 4| qw| 10| 2| 1|
| 1| jx| 20| 1| 2|
| 2| zx| 20| 1| 2|
| 5| aa| 22| 3| 4|
| 7| qq| 22| 3| 4|
| 3| wz| 33| 1| 6|
| 6| aq| 45| 3| 7|
+---+----+---+-------+----+
+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
| 1| jx| 20| 1| 1|
| 2| zx| 20| 1| 1|
| 3| wz| 33| 1| 3|
| 5| aa| 22| 3| 1|
| 7| qq| 22| 3| 1|
| 6| aq| 45| 3| 3|
| 4| qw| 10| 2| 1|
+---+----+---+-------+----+
*
* */
DENSE_RANK连续排序
dense_rank() over(order by )
使用该函数,并列排名之后的排序+1
示例
spark.sql("select id, name, age, area_id, dense_rank() over(order by age) rank from person").show
spark.sql("select id, name, age, area_id, dense_rank() over(partition by area_id order by age) rank from person").show
/*
+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
| 4| qw| 10| 2| 1|
| 1| jx| 20| 1| 2|
| 2| zx| 20| 1| 2|
| 5| aa| 22| 3| 3|
| 7| qq| 22| 3| 3|
| 3| wz| 33| 1| 4|
| 6| aq| 45| 3| 5|
+---+----+---+-------+----+
+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
| 1| jx| 20| 1| 1|
| 2| zx| 20| 1| 1|
| 3| wz| 33| 1| 2|
| 5| aa| 22| 3| 1|
| 7| qq| 22| 3| 1|
| 6| aq| 45| 3| 2|
| 4| qw| 10| 2| 1|
+---+----+---+-------+----+
*
* */
NTILE分组排序
ntile(6) over(order by) // 表示分成六个组,显示每个组的序号
spark.sql("select id, name, age, area_id, ntile(4) over(order by age) rank from person").show
spark.sql("select id, name, age, area_id, ntile(4) over(partition by area_id order by age) rank from person").show
/*
+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
| 4| qw| 10| 2| 1|
| 1| jx| 20| 1| 1|
| 2| zx| 20| 1| 2|
| 5| aa| 22| 3| 2|
| 7| qq| 22| 3| 3|
| 3| wz| 33| 1| 3|
| 6| aq| 45| 3| 4|
+---+----+---+-------+----+
+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
| 1| jx| 20| 1| 1|
| 2| zx| 20| 1| 2|
| 3| wz| 33| 1| 3|
| 5| aa| 22| 3| 1|
| 7| qq| 22| 3| 2|
| 6| aq| 45| 3| 3|
| 4| qw| 10| 2| 1|
+---+----+---+-------+----+
*
* */