SparkSQL 开窗函数

SparkSQL 开窗函数

开窗函数能在每行的最后一行都显示聚合函数的结果,所以聚合函数可以用作开窗函数

聚合函数和开窗函数

聚合函数是将多行变成一行,如果要显示其他列,必须将列加入group by

开窗函数是将一行变成多行,将所有的信息显示出来

开窗函数

聚合开窗函数

聚合函数 over(partition by子句)

over关键字将聚合函数当作聚合开窗函数

SQL标准允许所有的聚合函数用作聚合开窗函数

示例:

//    spark.sql("select id, name, age, count(name) from person").show 报错
    spark.sql("select id, name, age, count(name)over() sum from person").show

/*
* +---+----+---+---+
| id|name|age|sum|
+---+----+---+---+
|  1|  jx| 20|  6|
|  2|  zx| 21|  6|
|  3|  wz| 33|  6|
|  4|  qw| 11|  6|
|  5|  aa| 22|  6|
|  6|  aq| 45|  6|
+---+----+---+---+
*
* */

over后面的括号还可以改变聚合函数的窗口范围

如果over后面的括号为空,则开窗函数会对所有行进行聚合运算

over后面的括号里可以用partition by 来定义行的分区来进行聚合运算

partition by进行分区之后,计算当前分区的聚合计算的结果

spark.sql("select id, name, age, area_id, count(name)over(partition by area_id) sum from person").show

/*
+---+----+---+-------+---+
| id|name|age|area_id|sum|
+---+----+---+-------+---+
|  1|  jx| 20|      1|  3|
|  2|  zx| 21|      1|  3|
|  3|  wz| 33|      1|  3|
|  5|  aa| 22|      3|  2|
|  6|  aq| 45|      3|  2|
|  4|  qw| 11|      2|  1|
+---+----+---+-------+---+
*
* */

排序开窗函数

ROW_NUMBER顺序排序
row_number() over(order by score) 

排序开窗函数中使用partition by 需要放置在order by之前

实例

spark.sql("select id, name, age, area_id, row_number() over(order by age) rank from person").show
spark.sql("select id, name, age, area_id, row_number() over(partition by area_id order by age) rank from person").show

/*
+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
|  4|  qw| 11|      2|   1|
|  1|  jx| 20|      1|   2|
|  2|  zx| 21|      1|   3|
|  5|  aa| 22|      3|   4|
|  3|  wz| 33|      1|   5|
|  6|  aq| 45|      3|   6|
+---+----+---+-------+----+

+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
|  1|  jx| 20|      1|   1|
|  2|  zx| 21|      1|   2|
|  3|  wz| 33|      1|   3|
|  5|  aa| 22|      3|   1|
|  6|  aq| 45|      3|   2|
|  4|  qw| 11|      2|   1|
+---+----+---+-------+----+
*
* */

RANK跳跃排序
rank() over(order by)

使用该函数排序求出来的结果可以并列

示例

spark.sql("select id, name, age, area_id, rank() over(order by age) rank from person").show
spark.sql("select id, name, age, area_id, rank() over(partition by area_id order by age) rank from person").show

/*
+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
|  4|  qw| 10|      2|   1|
|  1|  jx| 20|      1|   2|
|  2|  zx| 20|      1|   2|
|  5|  aa| 22|      3|   4|
|  7|  qq| 22|      3|   4|
|  3|  wz| 33|      1|   6|
|  6|  aq| 45|      3|   7|
+---+----+---+-------+----+

+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
|  1|  jx| 20|      1|   1|
|  2|  zx| 20|      1|   1|
|  3|  wz| 33|      1|   3|
|  5|  aa| 22|      3|   1|
|  7|  qq| 22|      3|   1|
|  6|  aq| 45|      3|   3|
|  4|  qw| 10|      2|   1|
+---+----+---+-------+----+
*
* */
DENSE_RANK连续排序
dense_rank() over(order by )

使用该函数,并列排名之后的排序+1

示例

spark.sql("select id, name, age, area_id, dense_rank() over(order by age) rank from person").show
spark.sql("select id, name, age, area_id, dense_rank() over(partition by area_id order by age) rank from person").show


/*
+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
|  4|  qw| 10|      2|   1|
|  1|  jx| 20|      1|   2|
|  2|  zx| 20|      1|   2|
|  5|  aa| 22|      3|   3|
|  7|  qq| 22|      3|   3|
|  3|  wz| 33|      1|   4|
|  6|  aq| 45|      3|   5|
+---+----+---+-------+----+

+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
|  1|  jx| 20|      1|   1|
|  2|  zx| 20|      1|   1|
|  3|  wz| 33|      1|   2|
|  5|  aa| 22|      3|   1|
|  7|  qq| 22|      3|   1|
|  6|  aq| 45|      3|   2|
|  4|  qw| 10|      2|   1|
+---+----+---+-------+----+

*
* */

NTILE分组排序
ntile(6) over(order by) // 表示分成六个组,显示每个组的序号
spark.sql("select id, name, age, area_id, ntile(4) over(order by age) rank from person").show
spark.sql("select id, name, age, area_id, ntile(4) over(partition by area_id order by age) rank from person").show

/*
+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
|  4|  qw| 10|      2|   1|
|  1|  jx| 20|      1|   1|
|  2|  zx| 20|      1|   2|
|  5|  aa| 22|      3|   2|
|  7|  qq| 22|      3|   3|
|  3|  wz| 33|      1|   3|
|  6|  aq| 45|      3|   4|
+---+----+---+-------+----+

+---+----+---+-------+----+
| id|name|age|area_id|rank|
+---+----+---+-------+----+
|  1|  jx| 20|      1|   1|
|  2|  zx| 20|      1|   2|
|  3|  wz| 33|      1|   3|
|  5|  aa| 22|      3|   1|
|  7|  qq| 22|      3|   2|
|  6|  aq| 45|      3|   3|
|  4|  qw| 10|      2|   1|
+---+----+---+-------+----+

*
* */
开窗函数Spark SQL中是一种用于对结果集进行分析和聚合计算的功能。它可以对结果集按照指定的分区进行分组,并在每个分组中进行聚合计算。开窗函数在解决一些复杂的问题时非常有用,可以简化SQL语句的编写,并提高查询效率。 Spark SQL中的开窗函数可以通过使用窗口规范来定义,窗口规范包括分区和排序的规则。分区规则用于将结果集划分为不同的分组,而排序规则用于在每个分组中确定计算的顺序。 通过使用开窗函数,您可以在同一SELECT语句中同时使用多个开窗函数,并且它们之间不会相互干扰。例如,您可以使用COUNT函数来计算每个分组中的记录数,或者使用RANK函数来计算每个分组中的排名。 以下是一个使用Spark SQL开窗函数的示例: ```spark sparkSession.sql("SELECT name, class, score, COUNT(name) OVER(PARTITION BY class) AS name_count1 FROM score").show() sparkSession.sql("SELECT name, class, score, COUNT(name) OVER(PARTITION BY score) AS name_count2 FROM score").show() ``` 在这个示例中,第一个SELECT语句使用COUNT函数,按照班级进行分组,并计算每个班级中的学生数量。第二个SELECT语句使用COUNT函数,按照分数进行分组,并计算每个分数对应的学生数量。 总之,Spark SQL开窗函数是一种强大的工具,可以帮助您对结果集进行灵活的分析和聚合计算。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [Spark SQL开窗函数](https://blog.csdn.net/weixin_39966065/article/details/93099293)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [Spark SQL——开窗函数](https://blog.csdn.net/weixin_44240370/article/details/103322615)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

健鑫.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值