推荐系统可能有很多种算法,这里简单概述一下推荐系统的过程,数据如下:
列是菜品
横是用户
中间是用户对菜品的评分,模拟给用户U1推荐菜品,推荐一个菜品(用户没有吃过的)
1. 给用户推荐的肯定是客户没有吃过的菜品: 可以给客户U1推荐 F6, F7 菜品,
2. 根据U1的历史数据,以及其它客户数据给F6,F7评分
对F6评分:
1 U1 吃过的菜 Z1 = {F1, F2, F3,F4,F5,F8,F9}
2 相似度计算,方法有多种(比如F1):
筛选吃过F1和F6菜品的客户,根据他们的评分计算相似度SIM1
3. 计算评分:
score = SIMn* Fn(评分)/
SIMn