c 调用python clion_[Python]在VSCode中搭建Python开发环境

前言

之前用过Anaconda下的SpyderPycharmJupyter等写过python的数据分析项目,各有优劣。因为我的C++Golang项目都是使用的VSCodeCLionGolangPycharm都需要付费使用,而且在Mac上消耗资源比VSCode更大),所以索性将MacWindowspython项目都迁移到VSCode上。

安装

首先确保电脑已经安装好PythonVSCode

1. 安装VSCode的Python插件

686e13c3ab26b8350ac967d5abb4cba4.png

2.选择python解释器

ctrl+shift+P打开VSCode的命令行,输入python: select Interpreter选择合适的python版本。

fe900fdee3b4d3eda17af1dd9b9a53c3.png

可以看到在.vscode/launch.json中,python的安装目录已经加入,和用户的全局设置区分开:

{
    "python.pythonPath": "C:UsersYANGAppDataLocalProgramsPythonPython37python.exe"
}

3. 运行代码

现在我已经写好了一个小项目,并使用git托管,在main函数下,首先确保文件组织格式正确:

3fd77fc94ec33be73a8b8548872b8adf.png

windows下你可以直接使用命令行运行项目:

cd ./src
python test.py

bd3943aa6cdb880ddc60b670ca420f10.png

vscode中,只需要右键点击运行代码即可运行工程代码,本质上仍然是调用环境变量中的python.exe执行对应的python文件。

配置python检查项

python的代码错误检查通常用 pep8pylintflake8,自动格式化代码通常用 autopep8yapfblack
  • 安装对应的库
pip install flake8
pip install yapf
  • 修改vscode的配置文件
{
    "python.pythonPath": "/usr/bin/python",
    "python.linting.enabled": true,
    "python.linting.flake8Enabled": true,
    "python.linting.pylintEnabled": false,
    "python.formatting.provider": "yapf"
    "python.linting.flake8Args": ["--max-line-length=248"], # 设置每行最大长度
}

如果一直报错: Linter pylint is not installed,那么在vscode左下角的python解释器中选择一个合适的解释器等它自动安装完即可。

8a75fc0d733a201ec519654d6edd6b30.png
### 如何在CLion中使用Python进行开发 #### 配置CLion支持Python解释器 为了使CLion能够识别并运行Python代码,配置合适的Python解释器至关重要。JetBrains官方建议通过插件来增强IDE的功能以适应多语言项目的需求[^1]。 对于希望集成Python到C/C++项目的开发者来说,安装`Python`插件是一个不错的选择。这允许在同一环境中管理不同编程语言编写的源文件,并提供诸如语法高亮、自动补全等功能的支持。 #### 创建混合型项目结构 当考虑在一个基于CMake构建系统的工程里加入Python脚本时,合理的目录布局有助于简化依赖管理和跨语言调用过程: ```plaintext project_root/ ├── CMakeLists.txt # 主CMake配置文件 ├── src/ # 存放C/C++源码的位置 └── scripts/ # 放置Python辅助工具或其他非编译资源的地方 └── __init__.py # 将scripts视为包的一部分以便导入其他模块 ``` 这种安排不仅保持了清晰度还便于后续扩展[^3]。 #### 编写和执行Python代码 一旦完成了上述准备工作,在`scripts`文件夹下创建新的`.py`文件即可开始编写Python逻辑。值得注意的是,虽然可以直接利用命令行启动这些独立的Python程序,但在大多数情况下更推荐定义专门的目标(Targets),这样可以通过点击按钮轻松调试或测试特定功能而无需离开编辑界面。 例如,在顶层`CMakeLists.txt`添加如下内容可以方便地注册一个新的可执行目标用于运行某个具体的Python脚本: ```cmake add_custom_target(run_python_script ALL COMMAND ${PYTHON_EXECUTABLE} "${CMAKE_SOURCE_DIR}/scripts/example.py") ``` 这里`${PYTHON_EXECUTABLE}`变量指向之前指定过的Python解释器路径; `${CMAKE_SOURCE_DIR}`则代表整个项目的根位置[^4]。 #### 使用PyCharm风格的工作流 得益于内置的VCS集成特性以及强大的版本控制系统(如Git),即使是在专注于嵌入式软件或者其他主要由低级语言构成的应用场景中引入少量高级别的自动化任务也变得轻而易举。此外,借助于第三方库的帮助——比如`subprocess`或者`os.system()`函数家族成员们所提供的接口——还可以进一步加强两种不同类型组件间的协作效率[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值