python datasets用法_Python datasets.SVHN属性代码示例

本文详细介绍了Python中torchvision.datasets.SVHN类的使用方法,包括数据预处理、数据加载器的创建等。通过26个代码示例,展示了如何在不同的场景下使用SVHN数据集,涵盖了数据下载、转换和加载等关键步骤。适用于机器学习和深度学习项目。
摘要由CSDN通过智能技术生成

本文整理汇总了Python中torchvision.datasets.SVHN属性的典型用法代码示例。如果您正苦于以下问题:Python datasets.SVHN属性的具体用法?Python datasets.SVHN怎么用?Python datasets.SVHN使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在模块torchvision.datasets的用法示例。

在下文中一共展示了datasets.SVHN属性的26个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: get_svhn

​点赞 6

# 需要导入模块: from torchvision import datasets [as 别名]

# 或者: from torchvision.datasets import SVHN [as 别名]

def get_svhn(train, get_dataset=False, batch_size=cfg.batch_size):

"""Get SVHN dataset loader."""

# image pre-processing

pre_process = transforms.Compose([transforms.ToTensor(),

transforms.Normalize(

mean=cfg.dataset_mean,

std=cfg.dataset_std)])

# dataset and data loader

svhn_dataset = datasets.SVHN(root=cfg.data_root,

split='train' if train else 'test',

transform=pre_process,

download=True)

if get_dataset:

return svhn_dataset

else:

svhn_data_loader = torch.utils.data.DataLoader(

dataset=svhn_dataset,

batch_size=batch_size,

shuffle=True)

return svhn_data_loader

开发者ID:corenel,项目名称:pytorch-atda,代码行数:24,

示例2: get_loader

​点赞 6

# 需要导入模块: from torchvision import datasets [as 别名]

# 或者: from torchvision.datasets import SVHN [as 别名]

def get_loader(config):

"""Builds and returns Dataloader for MNIST and SVHN dataset."""

transform = transforms.Compose([

transforms.Scale(config.image_size),

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

svhn = datasets.SVHN(root=config.svhn_path, download=True, transform=transform)

mnist = datasets.MNIST(root=config.mnist_path, download=True, transform=transform)

svhn_loader = torch.utils.data.DataLoader(dataset=svhn,

batch_size=config.batch_size,

shuffle=True,

num_workers=config.num_workers)

mnist_loader = torch.utils.data.DataLoader(dataset=mnist,

batch_size=config.batch_size,

shuffle=True,

num_workers=config.num_workers)

return svhn_loader, mnist_loader

开发者ID:yunjey,项目名称:mnist-svhn-transfer,代码行数:23,

示例3: get_targets

​点赞 6

# 需要导入模块: from torchvision import datasets [as 别名]

# 或者: from torchvision.datasets import SVHN [as 别名]

def get_targets(dataset):

"""Get the targets of a dataset without any target target transforms(!)."""

if isinstance(dataset, TransformedDataset):

return get_targets(dataset.dataset)

if isinstance(dataset, data.Subset):

targets = get_targets(dataset.dataset)

return torch.as_tensor(targets)[dataset.indices]

if isinstance(dataset, data.ConcatDataset):

return torch.cat([get_targets(sub_dataset) for sub_dataset in dataset.datasets])

if isinstance(

dataset, (datasets.MNIST, datasets.ImageFolder,)

):

return torch.as_tensor(dataset.targets)

if isinstance(dataset, datasets.SVHN):

return dataset.labels

raise NotImplementedError(f"Unknown dataset {dataset}!")

开发者ID:BlackHC,项目名称:BatchBALD,代码行数:20,

示例4: get_dataset

​点赞 6

# 需要导入模块: from torchvision import datasets [as 别名]

# 或者: from torchvision.datasets import SVHN [as 别名]

def get_dataset(self):

"""

Uses torchvision.datasets.CIFAR100 to load dataset.

Downloads dataset if doesn't exist already.

Returns:

torch.utils.data.TensorDataset: trainset, valset

"""

trainset = datasets.SVHN('datasets/SVHN/train/', split='train', transform=self.train_transforms,

target_transform=None, download=True)

valset = datasets.SVHN('datasets/SVHN/test/', split='test', transform=self.val_transforms,

target_transform=None, download=True)

extraset = datasets.SVHN('datasets/SVHN/extra', split='extra', transform=self.train_transforms,

target_transform=None, download=True)

trainset = torch.utils.data.ConcatDataset([trainset, extraset])

return trainset, valset

开发者ID:MrtnMndt,项目名称:OCDVAEContinualLearning,代码行数:20,

示例5: __init__

​点赞 5

# 需要导入模块: from torchvision import datasets [as 别名]

# 或者: from torchvision.datasets import SVHN [as 别名]

def __init__(self, root, train=True,

transform=None, target_transform=None, download=False):

if train:

split = 'train'

else:

split = 'test'

super(SVHN, self).__init__(root, split=split, transform=transform,

target_transform=target_transform, download=download)

# Subsample images to balance the training set

if split == 'train':

# compute the histogram of original label set

label_set = np.unique(self.labels)

num_cls = len(label_set)

count,_ = np.histogram(self.labels.squeeze(), bins=num_cls)

min_num = min(count)

# subsample

ind = np.zeros((num_cls, min_num), dtype=int)

for i in label_set:

binary_ind = np.where(self.labels.squeeze() == i)[0]

np.random.shuffle(binary_ind)

ind[i % num_cls,:] = binary_ind[:min_num]

ind = ind.flatten()

# shuffle 5 times

for i in range(100):

np.random.shuffle(ind)

self.labels = self.labels[ind]

self.data = self.data[ind]

开发者ID:jhoffman,项目名称:cycada_release,代码行数:34,

示例6: __init__

​点赞 5

# 需要导入模块: from torchvision import datasets [as 别名]

# 或者: from torchvision.datasets import SVHN [as 别名]

def __init__(self, root, train=True,

transform=None, target_transform=None, download=False):

if train:

split = 'train'

else:

split = 'test'

super(SVHN, self).__init__(root, split=split, transform=transform,

target_transform=target_transform, download=download)

开发者ID:jhoffman,项目名称:cycada_release,代码行数:10,

示例7: __init__

​点赞 5

# 需要导入模块: from torchvision import datasets [as 别名]

# 或者: from torchvision.datasets import SVHN [as 别名]

def __init__(self):

super(SVHNMetaInfo, self).__init__()

self.label = "SVHN"

self.root_dir_name = "svhn"

self.dataset_class = SVHNFine

self.num_training_samples = 73257

开发者ID:osmr,项目名称:imgclsmob,代码行数:8,

示例8: svhn_loaders

​点赞 5

# 需要导入模块: from torchvision import datasets [as 别名]

# 或者: from torchvision.datasets import SVHN [as 别名]

def svhn_loaders(batch_size):

train = datasets.SVHN("./data", split='train', download=True, transform=transforms.ToTensor(), target_transform=replace_10_with_0)

test = datasets.SVHN("./data", split='test', download=True, transform=transforms.ToTensor(), target_transform=replace_10_with_0)

train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size, shuffle=True, pin_memory=True)

test_loader = torch.utils.data.DataLoader(test, batch_size=batch_size, shuffle=False, pin_memory=True)

return train_loader, test_loader

开发者ID:locuslab,项目名称:convex_adversarial,代码行数:8,

示例9: LoadSVHN

​点赞 5

# 需要导入模块: from torchvision import datasets [as 别名]

# 或者: from torchvision.datasets import SVHN [as 别名]

def LoadSVHN(data_root, batch_size=32, split='train', shuffle=True):

if not os.path.exists(data_root):

os.makedirs(data_root)

svhn_dataset = datasets.SVHN(data_root, split=split, download=True,

transform=transforms.ToTensor())

return DataLoader(svhn_dataset,batch_size=batch_size, shuffle=shuffle, drop_last=True)

开发者ID:Alexander-H-Liu,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值