自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(86)
  • 收藏
  • 关注

原创 VSCode如何让先前打开的文件不被自动关闭,一直保持在标签栏里(关闭预览模式)

参考链接:

2024-05-21 15:00:14 786

原创 epoll 中EPOLLIN 和 EPOLLOUT

其实,如果你真的想强制触发一次,也是有办法的,直接调用epoll_ctl重新设置一下event就可以了,event跟原来的设置一模一样都行(但必须包含EPOLLOUT),关键是重新设置,就会马上触发一次EPOLLOUT事件。EPOLLIN事件则只有当对端有数据写入时才会触发,所以触发一次后需要不断读取所有数据直到读完EAGAIN为止。简单地说:EPOLLOUT事件只有在不可写到可写的转变时刻,才会触发一次,所以叫边缘触发,这叫法没错的!2.对端读取了一些数据,又重新可写了,此时会触发EPOLLOUT。

2024-03-28 14:20:47 530

原创 MacOS 退出默认conda环境

将false 改为true 默认打开。

2024-03-01 16:51:00 526

原创 General Agent: 一个简单、通用、可定制的Agent框架

转载文章:GitHub项目地址:

2024-02-27 16:31:21 251

原创 MacOS 使用vscode调试C++代码

参考文章:

2024-02-26 18:28:14 531

原创 latex 罗马数字

\uppercase\expandafter{\romannumeral+数字}”即可输入大写形式的罗马数字,并且不影响后续文本的大小写。

2023-04-03 19:19:44 1838

原创 MathType下表maxmin⽆法实现斜体的问题

ctrl+shift+V

2022-12-30 16:06:09 821

原创 latex多个公式左对齐

说明1:&符号就是"对齐的位置",放置在最左边就是多行公式左对齐;说明2:\符号是每一行公式结束后的换行。

2022-12-29 14:56:20 2255

原创 C++虚函数

(1)定义子类对象,并调用对象中未被子类覆盖的基类函数A。同时在该函数A中,又调用了已被子类覆盖的基类函数B。那此时将会调用基类中的函数B,可我们本应该调用的是子类中的覆盖函数B。虚函数即能解决这个问题。(2)在使用指向子类对象的基类指针,并调用子类中的覆盖函数时,如果该函数不是虚函数,那么将调用基类中的该函数;如果该函数是虚函数,则会调用子类中的该函数。

2022-12-13 13:50:38 136

原创 matlab最小二乘法拟合多项式

https://zhuanlan.zhihu.com/p/377269047

2022-10-28 13:46:33 504

原创 计算Conv3D 的输入输出

参考链接:

2022-10-27 15:03:05 409

原创 conda换源

【代码】conda换源。

2022-10-08 19:45:08 284

原创 使用多模态融合

https://drivendata.co/blog/hateful-memes-benchmark/

2022-10-08 15:45:24 196 1

原创 多模态数据集

原文链接:

2022-09-30 00:18:05 837 1

原创 一种简单有效的图像和文本双模态融合方法

Bert具有三个embedding层,分别是Token,Segment,Position,我们使用Token层的信息,该层代表了文本的词向量信息,是一个l*768维的向量。本文旨在介绍一种图像和文本双模态的特征融合方法,该方法易于实现,仅仅使用文本预训练模型如Bert,就可以将图像模态融入到文本模态中。使用 nf_resnet50 神经网络,将图像传入,使用池化层后的输出层特征向量,该向量是一个1*2304维度的特征向量。使用该向量与第一步我们得到的n*768维的图像特征向量作简单的拼接,得到 (l+n)

2022-09-30 00:15:52 3549 1

原创 如何将文件压缩成.tar.gz格式的文件

所以需要做第二步,再在这个tar文件上面点右键,选“7-ZIP”->“添加到压缩档案”,这时候弹出的窗口里再看“压缩格式选项”,发现多了两个刚才没有的,其中就包括“GZip”,是的,这一步就是把tar文件继续压缩成GZip。选择“GZip”格式后确定,最后结果就是一个新的tar.gz格式的文件。然后选“7-ZIP”->“添加到压缩档案”,在弹出来的窗口里有个“压缩格式”的选项,里面并没有tar.gz格式,没关系,里面有一个Tar格式,第一步就是要先压成tar格式。1.下载“7-ZIP“这个软件。

2022-09-27 18:34:32 7273

原创 配置实验室服务器环境(记录一些坑)

配置实验室服务器环境

2022-09-21 01:00:24 919

原创 git使用方法

https://baijiahao.baidu.com/s?id=1619544681032320225&wfr=spider&for=pc

2022-09-21 00:27:41 87

原创 查看cuda版本以及torch版本

ncvv - V。

2022-09-19 14:08:17 3313

原创 transformer 代码+注释

【代码】transformer 代码+注释。

2022-09-17 21:52:19 717

原创 COLOR_RGB2BGR

读进去的是BGR格式的,但是在保存图片时,要保存为RGB格式的,可以用cv2.COLOR_BGR2RGB。cv2读取了一幅图片,

2022-08-31 18:43:51 1688 1

原创 windows 升级cuda 不需要那么复杂 不用卸载什么的

如题 按照下面链接 直接又安装了一遍。

2022-08-30 02:19:39 529

原创 tensorflow.keras 加载预训练模型后修改学习率lr

在一个数据集上训练模型,训练很多个epoch后,学习率lr已经变得很小,需要改变lr想在新数据集上加载此模型,使用model.load_weights后,模型的学习率仍为原来的小学习率加入代码from keras import backend as K# To get learning rateprint(K.get_value(model.optimizer.lr))# To set learning rateK.set_value(model.optimizer.lr, 0.001)ke

2022-05-10 20:35:16 1064

原创 endnote 参考文献多个作者et al 全部显示

编辑——输出样式——作者列表参考链接:https://zhidao.baidu.com/question/377844370.html

2022-05-05 00:38:08 4242

原创 光流法 处理视频

本文整理汇总了Python中cv2.calcOpticalFlowFarneback方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.calcOpticalFlowFarneback方法的具体用法?Python cv2.calcOpticalFlowFarneback怎么用?Python cv2.calcOpticalFlowFarneback使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块cv2的用法示例。在下文中一共展示了cv2.

2022-04-26 00:22:35 500

原创 tensorflow 对应GPU 版本 cuda cudNN

版本 Python 版本 编译器 构建工具 cuDNN CUDAtensorflow-2.6.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2tensorflow-2.5.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2tensorflow-2.4.0 3.6-3.8 GCC 7.3.1 Bazel 3.1.0 8.0 11.0tensorflow-2.3.0 3.5-3.8 GCC 7.3.1 Bazel 3.1.0 7.6 10.1

2022-04-24 14:48:46 1403

原创 图解卷积层stride,padding,kernel_size 和卷积前后特征图尺寸之间的关系

设置卷积核大小(kernel_size),卷积步长 (stride),特征图**填充宽度 (padding)**等参数原文链接:https://zhuanlan.zhihu.com/p/163017446

2022-04-10 13:22:05 978

原创 python npy文件

数组读写方法在使⽤numpy科学计算时,我们想保存⼀些矩阵和数组数据。但维度较⼤,有三维,四维甚⾄五维。此时上述⽅法对数据的读写就很⿇烦。numpy提供了较⽅便保存数组和矩阵的函数⼆进制格式读写npy⽂件使⽤save和load函数保存和加载数组import numpy as npx = np.array([1,2,3])np.save('save',x)x = np.load('save.npy')...

2022-04-10 13:09:41 910

转载 TensorFlow2.0——模型保存、读取与可训练参数提取

https://www.cnblogs.com/dwithy/p/14015501.html?ivk_sa=1024320u

2022-04-10 12:56:14 371

原创 Keras:如何保存模型并继续训练?

import numpy as npfrom numpy.testing import assert_allclosefrom keras.models import Sequential, load_modelfrom keras.layers import LSTM, Dropout, Densefrom keras.callbacks import ModelCheckpointvec_size = 100n_units = 10x_train = np.random.rand(50

2022-04-10 12:48:49 2104 1

原创 在tf.keras.layers.Conv3D中的input_shape 应该怎么输入

处理视频时,每个视频由37帧组成,每个图像的尺寸为 1001003,所有数据集的形状为【nums_of_videos,37,100,100,3】如果想要将这些数据通过tf.keras.layers.Conv3D()input_shape应该是什么?【100,100,37,3】来源:https://datascience.stackexchange.com/questions/90910/what-will-be-the-input-shape-of-tf-keras-layers-conv3d-

2022-03-25 16:35:24 2285

原创 Volatile关键字

volatile这个关键字出现的场合在操作系统编程、硬件开发、嵌入式系统或者是其他的线程遇到的概率会大一些。这个关键字本身的意思是它所修饰的变量是不稳定的,在运行过程中有可能会被改变成新的值。我们程序加载到内存里面然后一些计算变量在加载到缓存,最后到寄存器参加CPU的运算,流程大概是这样的,记住这个流程之后我们就来看一下volatile关键字到底在哪个环节起着什么样的作用。没有volatile修饰我们看一下上面的代码,在外面对代码进行编译的时候我们的编译器会对我们的代码做出一些优化,我们都知道计算机

2022-03-09 20:52:48 101

原创 concatenate函数

https://www.cnblogs.com/ymjyqsx/p/6472507.html

2022-03-03 15:18:17 167

原创 使用plot_model 生成矢量图SVG

tf.keras.utils.plot_model(model, to_file='./model.png')tf.keras.utils.plot_model(model, to_file='./model_96DPI.svg')tf.keras.utils.plot_model(model, to_file='./model_NoneDPI.svg', dpi=None)

2022-02-22 18:39:52 348

原创 python库介绍-PySimpleGUI-简单的GUI开发工具

https://pysimplegui.readthedocs.io/en/latest/cookbook/https://zhuanlan.zhihu.com/p/88665288

2022-02-10 16:18:57 8379

转载 浅谈Keras中fit()和fit_generator()的区别及其参数的坑

https://www.jb51.net/article/212438.htm

2022-02-10 14:31:54 191

转载 STRATIFIEDSHUFFLESPLIT()函数的详细理解

https://www.freesion.com/article/39501405024/

2022-02-08 21:36:58 263

转载 Keras.metrics中的accuracy总结

接下来将对这些accuracy进行逐个介绍。1) accuracy该accuracy就是大家熟知的最朴素的accuracy。比如我们有6个样本,其真实标签y_true为[0, 1, 3, 3, 4, 2],但被一个模型预测为了[0, 1, 3, 4, 4, 4],即y_pred=[0, 1, 3, 4, 4, 4],那么该模型的accuracy=4/6=66.67%。2) binary_accuracybinary_accuracy和accuracy最大的不同就是,它适用于2分类的情况。从上图中可以

2022-01-24 22:02:53 326

转载 Keras.metrics中的accuracy总结

接下来将对这些accuracy进行逐个介绍。1) accuracy该accuracy就是大家熟知的最朴素的accuracy。比如我们有6个样本,其真实标签y_true为[0, 1, 3, 3, 4, 2],但被一个模型预测为了[0, 1, 3, 4, 4, 4],即y_pred=[0, 1, 3, 4, 4, 4],那么该模型的accuracy=4/6=66.67%。2) binary_accuracybinary_accuracy和accuracy最大的不同就是,它适用于2分类的情况。从上图中可以

2022-01-24 21:59:50 594

原创 MockServer的测试思想与实现(上篇)(下篇)

https://blog.51cto.com/baidutech/743685https://blog.51cto.com/baidutech/743677

2021-12-17 18:45:30 238

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除