回文诗
,顾名思义,就是能够回还往复,正读倒读皆成章句的诗篇。回文诗是我国古典诗歌中一种较为独特的体裁。明末浙江才女
吴绛雪
作《四时山水诗》很奇物,诗云:
其实英文里也有回文。
Radar 雷达
Rotator 旋转体
Nolemons,no melon. 没有柠檬,没有甜瓜。
Able was I ere I saw Elba.
在见到厄尔巴岛之前,我本无所不能。(拿破仑)
Aman,a plan,a canal,Panama.
一个人,一项计划,造就一条运河。(巴拿马运河)
英语里的回文跟博大精深的汉语文化比起来,真是不可同日而语。
在数学中也有这样一类数字有这样的特征,称为
回文数
(palindrome number)。
我们可以算一算,在三位数中,一共有多少这样的“回文数”?
可以使用如下列表枚举的方式取得答案:
可见,在三位数中共有9×10=90个这样的回文数。
其实,用这种方法也可以算出,四位数的回文数也有90个。
四位的回文数有一个特点,就是它决不会是一个
质数
,且它一定能被11整除。
还有一种回文数,它同时还是某一个数的平方,这样的数字叫做
回文平方数
。例如:
121。
100以上至1000以内的回文平方数只有3个,分别是:121、484、676。
(121是11的平方;484是22的平方;676是26的平方。)
为什么这些数的乘积是都回文数?(写成乘法竖式就明白了)
深入下去一点,可知11的前4个幂次都是回文数:
人们借助电子计算机发现,在 完全平方数 、 完全立方数 中的回文数,其比例要比一般 自然数 中回文数所占的比例大得多。人们迄今未能找到自然数(除0和1)的五次方,以及更高次幂的回文数。于是数学家们猜想:不存在nk(n≥2,k≥5;n、k均是自然数)形式的回文数。
在电子计算器的实践中,还发现了一桩趣事: 任何一个自然数与它的倒序数相加,所得的和再与和的倒序数相加,……如此反复进行下去,经过有限次步骤后,最后必定能得到一个回文数。 例如,以23为起始数,只需1次相加就可以得到一个回文数: 23+32=55,一个回文数 也可能需要2步,比如以75为起始数: 75+57=132,132+231=363,一个回文数 还可能需要3步,比如以86为起始数: 86+68=154,154+451=605,605+506=1111,一个回文数 以97为起始数需要6步才能得到一个回文数,而以98为起始数则需要24步。 这也仅仅 是个猜想 ,因为有些数并不“驯服”。比如说196这个数,按照上述变换规则重复了数十万次,仍未得到回文数。 这些回文数,是不是很有意思呢?可以说,从数学中也能体会到诗的意境呢!丨作者 \ Leibniz之梦
丨数学是对真理的探索,对矛盾的怀疑,它绝非晦涩难懂的学问,它是纯粹而朴实的智慧。愿我们能发现数学之美,发现美的本原源于数学。