1000以内的回文数_从回文诗到回文数

9e90b00fd500dd9a357302c974083fc3.gif 回文诗 ,顾名思义,就是能够回还往复,正读倒读皆成章句的诗篇。回文诗是我国古典诗歌中一种较为独特的体裁。明末浙江才女 吴绛雪 作《四时山水诗》很奇物,诗云: 694345fef4250273f88f9b9797f16bb6.png 91fcd9df93cc1fbdc091d0caaf3ef5d1.png 1e166dfc51988113bce0c696b0110e9a.png 7519b50fc5158e2d17fc061df930cd4f.png ed835ca628cbe6d63a99a9bea67f35a4.gif     其实英文里也有回文。 Radar 雷达 Rotator 旋转体 Nolemons,no melon. 没有柠檬,没有甜瓜。           Able was I ere I saw Elba.  在见到厄尔巴岛之前,我本无所不能。(拿破仑) Aman,a plan,a canal,Panama.  一个人,一项计划,造就一条运河。(巴拿马运河)     英语里的回文跟博大精深的汉语文化比起来,真是不可同日而语。 ed835ca628cbe6d63a99a9bea67f35a4.gif 在数学中也有这样一类数字有这样的特征,称为 回文数 (palindrome number)。 我们可以算一算,在三位数中,一共有多少这样的“回文数”? 可以使用如下列表枚举的方式取得答案:

4ae985dfc9b6d3730fb05a6f3fc37f15.png

可见,在三位数中共有9×10=90个这样的回文数。 其实,用这种方法也可以算出,四位数的回文数也有90个。 四位的回文数有一个特点,就是它决不会是一个 质数 ,且它一定能被11整除。

d5f9e6037ecb3b2aab3711eff7277161.png

ed835ca628cbe6d63a99a9bea67f35a4.gif 还有一种回文数,它同时还是某一个数的平方,这样的数字叫做 回文平方数 。例如: 121。 100以上至1000以内的回文平方数只有3个,分别是:121、484、676。 (121是11的平方;484是22的平方;676是26的平方。)

334dc67a5dfceb765d1f7518de6e4e7f.png

为什么这些数的乘积是都回文数?(写成乘法竖式就明白了)

    深入下去一点,可知11的前4个幂次都是回文数:

a6294c443910e2ff6448fc2a9d3587ff.png

      人们借助电子计算机发现,在 完全平方数 、 完全立方数 中的回文数,其比例要比一般 自然数 中回文数所占的比例大得多。

人们迄今未能找到自然数(除0和1)的五次方,以及更高次幂的回文数。于是数学家们猜想:不存在nk(n≥2,k≥5;n、k均是自然数)形式的回文数

ed835ca628cbe6d63a99a9bea67f35a4.gif

在电子计算器的实践中,还发现了一桩趣事: 任何一个自然数与它的倒序数相加,所得的和再与和的倒序数相加,……如此反复进行下去,经过有限次步骤后,最后必定能得到一个回文数。   例如,以23为起始数,只需1次相加就可以得到一个回文数: 23+32=55,一个回文数 也可能需要2步,比如以75为起始数: 75+57=132,132+231=363,一个回文数 还可能需要3步,比如以86为起始数: 86+68=154,154+451=605,605+506=1111,一个回文数 以97为起始数需要6步才能得到一个回文数,而以98为起始数则需要24步。       这也仅仅 是个猜想 ,因为有些数并不“驯服”。比如说196这个数,按照上述变换规则重复了数十万次,仍未得到回文数。     这些回文数,是不是很有意思呢?可以说,从数学中也能体会到诗的意境呢!

6c01a08559c3c1bab3b4e49e12443861.gif

50d5efc73c18be578418c8cf8813b43e.png

丨作者 \ Leibniz之梦

丨数学是对真理的探索,对矛盾的怀疑,它绝非晦涩难懂的学问,它是纯粹而朴实的智慧。愿我们能发现数学之美,发现美的本原源于数学。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值