mnist数据集 python_MNIST数据集

一、MNIST数据集分类简单版本

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

#载入数据集

mnist = input_data.read_data_sets("MNIST_data",one_hot=True)

#每个批次的大小

batch_size = 100

#计算一共有多少个批次

n_batch = mnist.train.num_examples // batch_size

#定义两个placeholder

x = tf.placeholder(tf.float32,[None,784])

y = tf.placeholder(tf.float32,[None,10])

#创建一个简单的神经网络

W = tf.Variable(tf.zeros([784,10]))

b = tf.Variable(tf.zeros([10]))

prediction = tf.nn.softmax(tf.matmul(x,W)+b)

#二次代价函数

loss = tf.reduce_mean(tf.square(y-prediction))

#使用梯度下降法

train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#初始化变量

init = tf.global_variables_initializer()

#结果存放在一个布尔型列表中

correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置

#求准确率

accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:

sess.run(init)

for epoch in range(21):

for batch in range(n_batch):

batch_xs,batch_ys = mnist.train.next_batch(batch_size)

sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})

acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})

print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值