基于人工免疫危险理论的微博水军用户检测研究-计算机科学.PDF
第 卷 第 期 计 算 机 科 学
45 11 Vol.45No.11
年 月
2018 11 COMPUTER SCIENCE Nov.2018
基于人工免疫危险理论的微博水军用户检测研究
1 1 2 3
杨 超 秦廷栋 范 波 李 涛
1 2
(湖北大学计算机与信息工程学院 武汉 ) (武汉大学科学技术发展研究院 武汉 )
430062 430072
3
( ( ) )
智能信息处理与实时工业系统湖北省重点实验室 武汉科技大学 武汉
430065
, . ,
摘 要 将人工免疫危险理论引入到用户行为特征的分析中 以有效地识别微博水军用户 以新浪微博为例 分析了
, 、 、 、 、 ,
新浪微博水军的行为特征 选取微博总数 微博等级 是否认证 阳光信用 粉丝数等特征属性 将属性分析结果作为区
, ( , ) .
别水军与正常用户的特征信号 并基于树突状细胞算法 DendriticCellsAlorithm DCA 实现新浪微博水军的识别
g
,
使用新浪微博用户的真实数据对算法的有效性进行了验证和对比实验 结果表明该方法能够有效检测出新浪微博中
, .
的水军用户 具有较高的检测准确率
, , , ,
关键词 微博水军 行为特征 人工免疫 危险理论 树突状细胞算法
中图法分类号 文献标识码 /
TP393 A DOI 10.11896 .issn.1002G137X.2018.11.020
j
Stud onDetectionofWeiboSammersBasedonDanerTheorinArtificialImmunitSstem
y p g