📃个人主页:island1314
⛺️ 欢迎关注:👍点赞 👂🏽留言 😍收藏 💞 💞 💞
- 生活总是不会一帆风顺,前进的道路也不会永远一马平川,如何面对挫折影响人生走向 – 《人民日报》
一、DFS
1. 基本思想
DFS(Depth-First Search)
是一种通过递归或显式栈结构实现的搜索算法,其核心思想是 “一条路走到黑,不撞南墙不回头”。它会沿着某条分支尽可能深入,直到无法继续时回溯到上一个分叉点
2. 特点
- 数据结构:使用栈(递归调用栈或手动维护的栈)。
- 空间复杂度:取决于递归深度,最坏为 𝑂(𝐻)O(H)(𝐻H 为树的高度或图的深度)。
- 时间复杂度:𝑂(𝑉+𝐸)O(V+E)(遍历所有顶点和边)。
- 适用场景:
- 路径搜索(如迷宫问题)
- 连通性检测(如岛屿问题)
- 回溯问题(如排列组合、N皇后)
- 拓扑排序(后序遍历逆序)
3. C++实现
-
递归实现(以图的遍历为例)
void dfs(int u, vector<bool>& visited, vector<vector<int>>& graph) { visited[u] = true; for (int v : graph[u]) { if (!visited[v]) { dfs(v, visited, graph); } } }
-
非递归实现(显式栈)
void dfs_iterative(int start, vector<vector<int>>& graph) { stack<int> st; vector<bool> visited(graph.size(), false); st.push(start); visited[start] = true; while (!st.empty()) { int u = st.top(); st.pop(); for (int v : graph[u]) { if (!visited[v]) { visited[v] = true; st.push(v); } } } }
4. 经典例题
例题1:八皇后(洛谷P1219)
题目链接:USACO1.5 八皇后 Checker Challenge - 洛谷
思路:二进制来表示
代码如下:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <unordered_map>
using namespace std;
int n;
#define MASK(n) ((1<<(n+1))-2) //如 6 得到的是1000 0000 -> 111 1110,零位上的1不用
unordered_map<int, int> ind;
int tot = 3;
int arr[20];
void out()
{
for (int i = 1; i <= n; i++) {
if (i > 1) cout << " ";
printf("%d", arr[i]);
}
printf("\n");
tot--;
return;
}
int dfs(int i, int t1, int t2, int t3)
{
if (i > n) {
if(tot) out();
return 1;
}
int ans = 0;
for (int t = t1; t; t -= (-t & t)) {
int j = ind[-t & t];
if ((t2 & (1 << (i + j - 1))) && (t3 & (1 << (i - j + n)))) //正斜线和反斜线
{
arr[i] = j;
ans += dfs(i + 1, t1^(1 << j), t2^(1 << (i + j - 1)), t3^(1 << (i - j + n))); //把t1中的j标记为0,然后向左移动一位
}
}
return ans;
}
int main()
{
scanf("%d", &n);
for (int i = 0; i < 2 * n; i++) ind[1 << i] = i;
int ans = dfs(1, MASK(n), MASK(2 * n - 1), MASK(2 * n - 1)); //列,正斜边,反斜边
cout << ans << "\n";
return 0;
}
例题2:奇怪的电梯(洛谷P1135)
题目链接:P1135 奇怪的电梯 - 洛谷
思路:
- 先设立两个数组dis[]和to[],分别**表示到某层的最少按钮数和按键,dfs(k , a)中k表示使用的按钮数目,a表示到某一层,**当dis[]记录到的到某层的最少按钮数小于等于k时,就可递归返回。
代码如下:
#include <iostream>
using namespace std;
const int N = 205;
int to[N], dis[N]; //起点到每个点最短距离
int n;
void dfs(int k, int a){
if (dis[a] <= k) return;
dis[a] = k; //刷新到a的最短距离
if (a + to[a] <= n) dfs(k + 1, a + to[a]);
if (a - to[a] >= 1) dfs(k + 1, a - to[a]);
}
int main(){
int a, b;
cin >> n >> a >> b;
for (int i = 1; i <= n; i++) {
cin >> to[i]; //输入每个按钮的值
dis[i] = n + 1;
}
dfs(0, a);
printf("%d\n", dis[b] == n + 1 ? -1 : dis[b]);
return 0;
}
例题3:选数(洛谷P1036)
题目链接:P1036 NOIP 2002 普及组选数 - 洛谷
思路:
- **dfs(u, ind, sum)**分别表示当前已经选择了几个数,当前这一层可以选择的最小数字,所选当前的和值,is_prime()函数则用来判断是否为质数。
- 这题与之前文章里的【题目/算法训练】全排列相关问题(不用next-permutation)中的组合型枚举很像,想了解的朋友们可以下
代码如下:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 25;
int a[N];
int n, k;
long long ans = 0; //计算素数的数量
bool is_prime(int x){
if (x < 2) return false;
for (int i = 2; i <= x / i; i++){
if (x % i == 0) return false;
}
return true;
}
void dfs(int u,int ind, int sum){
if (u == k) {
if (is_prime(sum)) ans++;
return;
}
for(int i = ind; i <= n; i++){
dfs(u + 1, i + 1,sum + a[i]);
}
}
int main(){
cin >> n >> k;
for (int i = 1; i <= n; i++) cin >> a[i];
dfs(0, 1, 0);
printf("%lld\n", ans);
return 0;
}
例题4:迷宫(洛谷P1605)
题目链接:P1605 迷宫 - 洛谷
思路:
- **技巧:**从(1,1)开始读入,给地图上可以行走的地方初始化为1,0表示不可以走的点,相当于给地图外面放上障碍,就不用向上面一样对(x,y)进行特殊判断(如判断是否为1该点相邻的点,是不是障碍,有没有访问过)
代码如下:
#include <iostream>
using namespace std;
const int N = 7;
int g[N][N];
int n, m, t, sx, sy, ex, ey;
int ans = 0; //记录方法的数量
int dir[4][2] = {
{0,1},{1,0},{0,-1},{-1,0}
};
void dfs(int x, int y){
if (x == ex && y == ey) {
ans++;
return;
}
g[x][y] = 0;//表示当前点遍历过
for (int i = 0; i < 4; i++) {
int dx = x + dir[i][0], dy = y + dir[i][1];
if (g[dx][dy] == 0) continue;
dfs(dx, dy);
}
g[x][y] = 1;
}
int main(){
cin >> n >> m >> t;
for (int i = 1; i <= n; i++){
for(int j =1;j<=m;j++) g[i][j] = 1;
}
cin >> sx >> sy >> ex >> ey;
for (int i = 0; i < t; i++) {
int x, y;
cin >> x >> y;
g[x][y] = 0;
}
dfs(sx, sy);
cout << ans << "\n";
return 0;
}
例题5:吃奶酪(洛谷P1433)
题目链接:P1433 吃奶酪 - 洛谷
思路:
- **技巧:**从(1,1)开始读入,给地图上可以行走的地方初始化为1,0表示不可以走的点,相当于给地图外面放上障碍,就不用向上面一样对(x,y)进行特殊判断(如判断是否为1该点相邻的点,是不是障碍,有没有访问过)
代码如下:
#include <iostream>
#include <cmath>
using namespace std;
const int N = 17;
double ans = 1e9;
int n;
double x[N], y[N];
double dis[N][N]; //dis[i][j]表示从第i个奶酪到第j个奶酪的距离
double dp[70000][20]; //2^16,第一个位置表示状态编码,第二个位置表示达到当前状态,最后一个吃掉的奶酪编号
int ind[70000]; //权值映射
double d(int i, int j) {
return sqrt((x[i] - x[j])*(x[i] - x[j]) + (y[i] - y[j])* (y[i] - y[j]));
}
void dfs(int t, int now, double s) {
if (t == 0) { //吃掉了所有奶酪
if (s < ans) ans = s;
return;
}
for (int k = t; k; k -= (k & -k)) {
int to = ind[k & -k], next_t = t - (1 << to);
double l = s + dis[now][to];
if (dp[next_t][to] != 0 && dp[next_t][to] <= l) continue;
dp[next_t][to] = l;
if (ans <= l) continue;
dfs(next_t, to, l);
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n;
x[0] = y[0] = 0; //小老鼠位置
for (int i = 1; i <= n; i++) cin >> x[i] >> y[i];
for (int i = 0; i <= n; i++)
{
for (int j = i; j <= n; j++)
dis[i][j] = dis[j][i] = d(i, j);
}
for (int k = 1, i = 0; i <= N; i++, k *= 2)ind[k] = i; //权值到下标映射
dfs((1 << (n + 1)) - 2, 0, 0); //当前位置状态码,所在奶酪下标,到达状态所走总路程
printf("%.2lf\n", ans);
return 0;
}
例题6:单词搜索(LeetCode 79)
题目链接:P1433 吃奶酪 - 洛谷
思路:
- 很常规的DFS搜索,当第一个字符发生匹配时,就开始往下搜索,不匹配就退回来,直到遍历完所有字符都没有匹配成功,才返回false.
- 因此需要注意的是:应该是写成
if (dfs(board, word, i, j, 0)) return true;
,而不是return dfs(board, word, i, j, 0);
代码如下:
int dir[4][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
int n, m;
bool st[505][505];
bool dfs(vector<vector<char>>& board, string word, int x, int y, int pos) {
if (pos == word.size())
return true;
// 向量的方式,定义上下左右四个位置
for (int i = 0; i < 4; i++) {
int dx = x + dir[i][0], dy = y + dir[i][1];
if (dx >= 0 && dx < n && dy >= 0 && dy < m &&
board[dx][dy] == word[pos] && !st[dx][dy]) {
st[dx][dy] = true;
if (dfs(board, word, dx, dy, pos + 1))
return true;
st[dx][dy] = false;
}
}
return false;
}
bool exist(vector<vector<char>>& board, string word) {
n = board.size(), m = board[0].size();
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (board[i][j] == word[0]) {
st[i][j] = true;
if (dfs(board, word, i, j, 1))
return true;
st[i][j] = false;
}
}
}
return false;
}
二、BFS
1. 基本思想
BFS(Breadth-First Search)
通过队列逐层扩展搜索,保证先访问离起点最近的节点。其核心是“地毯式搜索,层层推进”。
2. 特点
- 数据结构:使用队列。
- 空间复杂度:𝑂(𝑉)O(V)(最坏情况存储所有顶点)。
- 时间复杂度:𝑂(𝑉+𝐸)O(V+E)。
- 适用场景:
- 无权图的最短路径(如迷宫最短步数)。
- 层级遍历(如二叉树的层次遍历)。
- 广播网络(如社交网络中的信息扩散)。
- 检测图的二分性(Bipartite)
3. C++实现
-
标准实现(以图的遍历为例)
void bfs(int start, vector<vector<int>>& graph) { queue<int> q; vector<bool> visited(graph.size(), false); q.push(start); visited[start] = true; while (!q.empty()) { int u = q.front(); q.pop(); for (int v : graph[u]) { if (!visited[v]) { visited[v] = true; q.push(v); } } } }
4. 经典例题
例题1:马的遍历(洛谷P1443)
题目链接:P1443 马的遍历 - 洛谷
思路:
- 假设马在(x,y)这个点,则马可以移动的方向有8个,偏移量如下所示,注意马走日。
- 注:马一次跳跃到达的点(x1,y1)和马原坐标(x,y)的关系是 ∣x1−x∣+∣y1−y∣=3.
(-1,-2) | (1,-2) | |||
---|---|---|---|---|
(-2,-1) | (2,-1) | |||
(x,y) | ||||
(-2,1) | (2,1) | |||
(-1,2) | (1,2) |
这题如果用之前的dfs(step,x,y)来表示则会超时,因此我们应该使用BFS算法层序遍历,遍历每一层,如果遍历了某个节点时,那么后续遍历这个节点绝对比之前找的step要大,层序遍历更适合求最短步长
代码如下:
#include <iostream>
#include <queue>
using namespace std;
const int N = 405;
int dir[8][2] = { //偏移量
{2,1},{-2,1},{2,-1},{-2,-1},
{1,2},{1,-2}, {-1,2},{-1,-2}
};
int dis[N][N];
int n, m;
struct Node { //广搜队列
Node(int x, int y, int s) :x(x), y(y), s(s) {}
int x, y, s;
};
void bfs(int a, int b){
queue<Node> q;
q.push(Node(a, b, 0));
dis[a][b] = 0;
//从当前节点扩展到其他点
while (!q.empty()) {
Node now = q.front();
q.pop();
for (int k = 0; k < 8; k++) {
int dx = now.x + dir[k][0], dy = now.y + dir[k][1];
if (dx < 1 || dx > n) continue;
if (dy < 1 || dy > m) continue;
if (dis[dx][dy] != -1)continue;
q.push(Node(dx, dy, now.s + 1));
dis[dx][dy] = now.s + 1;
}
}
}
int main()
{
int a, b;
cin >> n >> m >> a >> b;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
dis[i][j] = -1; //赋初值
}
}
bfs(a, b); //到达当前点所花步数,(a,b)表示当前所在位置
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cout << dis[i][j] << " ";
}
cout << "\n";
}
return 0;
}
5. BFS 解决最短路问题
例题1:迷宫离入口最近的出口(LeetCode 1296)
题目链接:1926. 迷宫中离入口最近的出口 - 力扣(LeetCode)
思路:
- 类似于层序遍历的操作,从起点开始层序遍历,并且在遍历的过程中记录当前遍历的层数。这样就能在找到出口的时候,得到起点到出口的最短距离。
代码如下
int dir[4][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
int nearestExit(vector<vector<char>>& maze, vector<int>& entrance) {
int n = maze.size(), m = maze[0].size();
queue<pair<int, int>> q;
q.push({entrance[0], entrance[1]});
vector<vector<int>> vis(n, vector<int>(m));
vis[entrance[0]][entrance[1]] = true;
int ans = 0;
while (!q.empty()) {
ans++;
int size = q.size();
while (size--) {
auto [x, y] = q.front();
q.pop();
for (int k = 0; k < 4; k++) {
int dx = x + dir[k][0], dy = y + dir[k][1];
if (dx >= 0 && dx < n && dy >= 0 && dy < m &&
!vis[dx][dy] && maze[dx][dy] == '.') {
if (dx == 0 || dx == n - 1 || dy == 0 || dy == m - 1)
return ans;
q.push({dx, dy});
vis[dx][dy] = true;
}
}
}
}
return -1;
}
例题2:最小基因变化(LeetCode 433)
题目链接:433. 最小基因变化 - 力扣(LeetCode)
思路:
- 如果将「每次字符串的变换」抽象成图中的「两个顶点和一条边」的话,问题就变成了「边权为 1的最短路问题」
- 因此,从起始的字符串开始,来一次 bfs即可
代码如下
int minMutation(string startGene, string endGene, vector<string>& bank) {
unordered_set<string> vis;
unordered_set<string> hash(bank.begin(), bank.end());
if(startGene == endGene) return 0;
if(!hash.count(endGene)) return -1;
string change = "ACGT";
queue<string> q;
q.push(startGene);
vis.insert(startGene);
int ret = 0;
while(!q.empty()){
ret++;
int size = q.size();
while(size--){
string t = q.front(); q.pop();
for(int i = 0; i < 8; i++){
string tmp = t;
for(int j = 0; j <change.size(); j++){
tmp[i] = change[j];
if(hash.count(tmp) && !vis.count(tmp)){
if(tmp == endGene) return ret;
q.push(tmp);
vis.insert(tmp);
}
}
}
}
}
return -1;
}
例题3:单词接龙(LeetCode 127)
思路:
- 和上题类似
代码如下
int ladderLength(string beginWord, string endWord, vector<string>& wordList) {
unordered_set<string> hash(wordList.begin(), wordList.end());
unordered_set<string> vis;
if(hash.count(endWord) == 0) return 0;
queue<string> q;
q.push(beginWord);
vis.insert(beginWord);
int ret = 1;
while(!q.empty()){
ret++;
int size = q.size();
while(size--){
string t = q.front(); q.pop();
for(int i = 0; i < t.size(); i++){
string tmp = t;
for(char ch = 'a'; ch <= 'z'; ch++){
tmp[i] = ch;
if(hash.count(tmp) && !vis.count(tmp)){
if(tmp == endWord) return ret;
q.push(tmp);
vis.insert(tmp);
}
}
}
}
}
return 0;
}
例题4:为高尔夫比赛砍树(LeetCode 675)
题目链接:675. 为高尔夫比赛砍树 - 力扣(LeetCode)
- 先找出砍树的顺序;
- 然后按照砍树的顺序,一个一个的用 bfs 求出最短路即可。
代码如下
int m, n;
bool vis[55][55];
int dir[4][2] = {
{1, 0}, {0, 1}, {-1, 0}, {0, -1}
};
int bfs(vector<vector<int>> &forest, int bx, int by, int ex, int ey){
if(bx == ex && by == ey) return 0;
queue<pair<int, int>> q;
memset(vis, 0, sizeof(vis));
q.push({bx, by});
vis[bx][by] = true;
int step = 0;
while(!q.empty()){
step++;
int size = q.size();
while(size--){
auto[a, b] = q.front(); q.pop();
for(int i = 0; i < 4; i++){
int x = a + dir[i][0], y = b + dir[i][1];
if(x >= 0 && x < n && y >= 0 && y < m && forest[x][y] && !vis[x][y]){
if(x == ex && y == ey) return step;
q.push({x, y});
vis[x][y] = true;
}
}
}
}
return -1;
}
int cutOffTree(vector<vector<int>>& forest) {
// 1. 找出砍树顺序(从小到大)
n = forest.size(), m = forest[0].size();
vector<pair<int, int>> trees;
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
if(forest[i][j] > 1){
trees.push_back({i, j});
}
}
}
sort(trees.begin(), trees.end(), [&](const pair<int, int> x, const pair<int, int> y){
return forest[x.first][x.second] < forest[y.first][y.second];
});
// 2. 按照顺序砍树 -- 相邻树的最短距离
int bx = 0, by = 0;
int ret = 0;
for(auto &[a, b]: trees){
int step = bfs(forest, bx, by, a, b);
if(step == -1) return -1;
ret += step;
bx = a, by = b;
}
return ret;
}https://leetcode.cn/problems/cut-off-trees-for-golf-event/description/
6. 多源最短路 BFS
例题1:01 矩阵(LeetCode 542)
题目链接:542. 01 矩阵 - 力扣(LeetCode)
对于求的最终结果,我们有两种方式:
- 方法一:从每一个 1 开始,然后通过层序遍历找到离它最近的0。
- 这一种方式,我们会以所有的 1起点,来一次层序遍历,势必会遍历到很多重复的点。并且如果矩阵中只有一个 0的话,每一次层序遍历都要遍历很多层,时间复杂度较高。
- 方法二:从 0 开始层序遍历,并且记录遍历的层数。当第一次碰到 1 的时候,当前的层数就是这个 1离 0 的最短距离
- 这一种方式,我们在遍历的时候标记一下处理过的1,能够做到只用遍历整个矩阵一次,就能得到最终结果。
- 但是,这里有一个问题,0是有很多个的,我们怎么才能保证遇到的1距离这一个 0是最近的呢?
- 其实很简单,我们可以先把所有的 0 都放在队列中,把它们当成一个整体,每次把当前队列里面的所有元素向外扩展一次。
代码如下
int dir[4][2] = {
{1, 0}, {0, 1}, {-1, 0}, {0, -1}
};
vector<vector<int>> updateMatrix(vector<vector<int>>& mat) {
int n = mat.size(), m = mat[0].size();
// dist[i][j] == -1 没有搜索过
vector<vector<int>> dist(n, vector<int>(m, -1));
queue<pair<int, int>> q;
// 1. 把所有点放入队列
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
if(mat[i][j] == 0) {
dist[i][j] = 0;
q.push({i, j});
}
}
}
// 2. 一层一层扩展
while(!q.empty()){
auto [a, b] = q.front(); q.pop();
for(int k = 0; k < 4; k++){
int x = a + dir[k][0], y = b + dir[k][1];
if(x >= 0 && x < n && y >= 0 && y < m && dist[x][y] == -1){
dist[x][y] = dist[a][b] + 1;
q.push({x, y});
}
}
}
return dist;
}
例题2:飞地的数量(LeetCode 1020)
题目链接:1020. 飞地的数量 - 力扣(LeetCode)
思路(正难则反)
- 从边上的 1开始搜索,把与边上1相连的联通区域全部标记一下然后再遍历一遍矩阵,看看哪些位置的1没有被标记即可标记的时候,可以用「多源 bfs 」解决。
代码如下
int dir[4][2] = {
{1, 0}, {0, 1}, {-1, 0}, {0, -1}
};
int numEnclaves(vector<vector<int>>& grid) {
int n = grid.size(), m = grid[0].size();
vector<vector<bool>> vis(n, vector<bool>(m));
queue<pair<int, int>> q;
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
if((i == 0 || i == n - 1 || j == 0 || j == m - 1) && grid[i][j] == 1) {
q.push({i, j});
vis[i][j] = true;
}
}
}
while(!q.empty()){
auto [a, b] = q.front(); q.pop();
for(int k = 0; k < 4; k++){
int x = a + dir[k][0], y = b + dir[k][1];
if(x >= 0 && x < n && y >= 0 && y < m && !vis[x][y] && grid[x][y] == 1){
q.push({x, y});
vis[x][y] = true;
}
}
}
int ret = 0;
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
if(grid[i][j] == 1 && !vis[i][j]) ret++;
}
}
例题3:地图上的最高点(LeetCode 1765)
题目链接:1765. 地图中的最高点 - 力扣(LeetCode)
思路
- 01 矩阵的变型题,直接用多源 BFS 解决
代码如下
int dir[4][2] = {
{1, 0}, {0, 1}, {-1, 0}, {0, -1}
};
vector<vector<int>> highestPeak(vector<vector<int>>& isWater) {
int n = isWater.size(), m = isWater[0].size();
vector<vector<int>> dist(n, vector<int>(m, -1));
queue<pair<int, int>> q;
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
if(isWater[i][j]){
dist[i][j] = 0;
q.push({i, j});
}
}
}
while(!q.empty())
{
auto [a, b] = q.front(); q.pop();
for(int k = 0; k < 4; k++){
int x = a + dir[k][0], y = b + dir[k][1];
if(x >= 0 && x < n && y >= 0 && y < m && dist[x][y] == -1 ){
dist[x][y] = dist[a][b] + 1;
q.push({x, y});
}
}
}
return dist;
}
例题4:地图分析(LeetCode 1765)
题目链接:1162. 地图分析 - 力扣(LeetCode)
思路
- 01 矩阵的变体
代码如下
int dir[4][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
int maxDistance(vector<vector<int>>& grid) {
int n = grid.size(), m = grid[0].size();
vector<vector<int>> dist(n, vector<int>(m, -1));
queue<pair<int, int>> q;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j]) { // 所有陆地
dist[i][j] = 0;
q.push({i, j});
}
}
}
int ret = -1;
while (!q.empty()) {
auto [a, b] = q.front();
q.pop();
for (int k = 0; k < 4; k++) {
int x = a + dir[k][0], y = b + dir[k][1];
if (x >= 0 && x < n && y >= 0 && y < m && dist[x][y] == -1) {
dist[x][y] = dist[a][b] + 1;
q.push({x, y});
ret = max(ret, dist[x][y]);
}
}
}
return ret;
}
8. BFS 解决拓扑排序
例题1:课程表(LeetCode 207)
思路:BFS 解决拓扑排序即可
- 将所有入度为0的点加入到队列中;当队列不空的时候,一直循环:
- 取出队头元素;
- 将于队头元素相连的顶点的入度-1;
- 然后判断是否减成 0,。如果减成0,就加入到队列中。
代码如下
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> adj(numCourses);
vector<int> d(numCourses, 0);
queue<int> q;
for(auto e: prerequisites){
int u = e[0], v = e[1];
adj[u].emplace_back(v);
d[v]++;
}
for(int i = 0; i < numCourses; i++){
if(d[i] == 0) q.push(i);
}
int cnt = 0;
while(!q.empty()){
int u = q.front(); q.pop();
cnt++;
for(auto v: adj[u]){
if(--d[v] == 0) q.push(v);
}
}
return cnt == numCourses;
}
例题2:课程表II(LeetCode 210)
题目链接:210. 课程表 II - 力扣(LeetCode)
思路:和上面类似
代码如下
vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> adj(numCourses);
vector<int> d(numCourses, 0);
for(auto e: prerequisites){
int v = e[0], u = e[1]; // e[0] <- e[1]
adj[u].push_back(v);
d[v]++;
}
queue<int> q;
for(int i = 0; i < numCourses; i++){
if(d[i] == 0) q.push(i);
}
vector<int> ans;
while(!q.empty()){
int u = q.front(); q.pop();
ans.push_back(u);
for(auto v: adj[u]){
if(--d[v] == 0) q.push(v);
}
}
return ans.size() != numCourses ? vector<int>() : ans;
}
例题3:火星词典(LeetCode LCR 114)
题目链接:LCR 114. 火星词典 - 力扣(LeetCode)
思路:将题意搞清楚之后,这道题就变成了判断有向图时候有环,可以用拓扑排序解决。
如何搜集信息(如何建图)
- 两层 for 循环枚举出所有的两个字符串的组合;
- 然后利用指针,根据字典序规则找出信息。
代码如下
unordered_map<char, unordered_set<char>> edges;
unordered_map<char, int> in; // 入度
bool add(string &s1, string &s2){
int n = min(s1.size(), s2.size());
int i = 0;
for(; i < n; i++){
if(s1[i] != s2[i]){
char a = s1[i], b = s2[i]; // a -> b
if(!edges.count(a) || !edges[a].count(b)){
edges[a].insert(b);
in[b]++;
}
break;
}
}
if(i == s2.size() && i < s1.size()) return true;
return false;
}
string alienOrder(vector<string>& words) {
// 1. 建图 + 初始化入度
for(auto &s: words){
for(auto &ch: s){
in[ch] = 0;
}
}
// 2. 连接
int n = words.size();
for(int i = 0; i < n; i++){
for(int j = i + 1; j < n; j++){
if(add(words[i], words[j])) return "";
}
}
// 3. 拓扑排序
queue<char> q;
for(auto &[a, b]: in){
if(b == 0) q.push(a);
}
string ret;
while(!q.empty()){
char t = q.front(); q.pop();
ret += t;
for(auto ch: edges[t]){
if(--in[ch] == 0) q.push(ch);
}
}
for(auto &[a, b]: in){
if(b != 0) return "";
}
return ret;
}
三、对比
特性 | DFS | BFS |
---|---|---|
数据结构 | 栈(递归/非递归) | 队列 |
空间复杂度 | 𝑂(𝐻)(路径深度) | 𝑂(𝑉)(存储所有节点) |
最短路径 | 不保证(可能找到非最短解) | 保证(无权图最短路径) |
适用场景 | 路径存在性、回溯问题 | 最短路径、层级遍历 |
内存消耗 | 较低(适合深树) | 较高(适合宽图) |
经典例题对比 --解决 FloodFill 算法
例题1:图像渲染(LeetCode 733)
思路:
- 可以利用「深搜」或者「宽搜」,遍历到与该点相连的所有「像素相同的点」,然后将其修改成指定的像素即可
DFS 方法如下:
int dir[4][2] = {
{1,0},{0,1},{-1,0},{0,-1}
};
typedef pair<int, int> PII;
vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc, int color) {
int target = image[sr][sc];
if (target == color) return image;
int m = image.size(), n = image[0].size();
queue<PII> q;
q.push({sr, sc});
while(!q.empty()){
auto [a, b] = q.front(); q.pop();
image[a][b] = color;
for(int i = 0; i < 4; i++){
int x = a + dir[i][0], y = b + dir[i][1];
if(x >= 0 && x < m && y >= 0 && y < n && image[x][y] == target){
q.push({x, y});
}
}
}
return image;
}
BFS 方法如下:
int dir[4][2] = {
{1,0},{0,1},{-1,0},{0,-1}
};
typedef pair<int, int> PII;
vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc, int color) {
int target = image[sr][sc];
if (target == color) return image;
int m = image.size(), n = image[0].size();
queue<PII> q;
q.push({sr, sc});
while(!q.empty()){
auto [a, b] = q.front(); q.pop();
image[a][b] = color;
for(int i = 0; i < 4; i++){
int x = a + dir[i][0], y = b + dir[i][1];
if(x >= 0 && x < m && y >= 0 && y < n && image[x][y] == target){
q.push({x, y});
}
}
}
return image;
}
例题2:岛屿数量(LeetCode 200)
思路:
- 可以利用「深搜」或者「宽搜」,遍历到与该点相连的所有「像素相同的点」,然后将其修改成指定的像素即可
DFS 方法如下:
int dir[4][2] = {
{1,0},{0,1},{-1,0},{0,-1}
};
int n, m;
bool vis[505][505]; //标记该点是否用过
void dfs(vector<vector<char>>& grid, int x, int y){
vis[x][y] = true;
for (int i = 0; i < 4; i++) {
int dx = x + dir[i][0], dy = y + dir[i][1];
if (dx >= 0 && dx < m && dy >= 0 && dy < n && !vis[dx][dy] && grid[dx][dy] == '1')
{
dfs(grid, dx, dy);
}
}
}
int numIslands(vector<vector<char>>& grid) {
m = grid.size(), n = grid[0].size();
int ret = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++){
if (!vis[i][j] && grid[i][j] == '1') {
ret++;
dfs(grid, i, j);
}
}
}
return ret;
}
BFS 方法如下:
int dir[4][2] = {
{1,0},{0,1},{-1,0},{0,-1}
};
bool vis[305][305];
int m, n;
void bfs(vector<vector<char>>& grid, int i, int j){
queue<pair<int, int>> q;
q.push({ i, j });
vis[i][j] = true;
while (q.size()){
auto [a, b] = q.front();
q.pop();
for (int k = 0; k < 4; k++) {
int x = a + dir[k][0], y = b + dy[k][1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == '1' &&!vis[x][y])
{
q.push({ x, y });
vis[x][y] = true;
}
}
}
}
int numIslands(vector<vector<char>>& grid){
m = grid.size(), n = grid[0].size();
int ret = 0;
for (int i = 0; i < m; i++){
for (int j = 0; j < n; j++){
if (grid[i][j] == '1' && !vis[i][j]){
ret++;
bfs(grid, i, j); // 把这块陆地全部标记⼀下
}
}
}
return ret;
}
例题3:岛屿的最大面积(LeetCode 695)
题目链接:695. 岛屿的最大面积 - 力扣(LeetCode)
思路:
- 遍历整个矩阵,每当遇到一块土地的时候,就用「深搜」或者「宽搜」将与这块土地相连的「整个岛屿」的面积计算出来。
- 然后在搜索得到的「所有的岛屿面积」求一个「最大值」即可。在搜索过程中,为了「防止搜到重复的土地」:可以开一个同等规模的「布尔数组」,标记一下这个位置是否已经被访问过;。
- 也可以将原始矩阵的 1修改成 0,但是这样操作会修改原始矩阵
DFS 方法如下:
int dir[4][2] = {
{1,0},{0,1},{-1,0},{0,-1}
};
int n, m, cnt;
bool vis[505][505]; //标记该点是否用过
void dfs(vector<vector<int>>& grid, int x, int y){
vis[x][y] = true;
cnt++; //记录每块岛屿的面积
for (int i = 0; i < 4; i++) {
int dx = x + dir[i][0], dy = y + dir[i][1];
if (dx >= 0 && dx < m && dy >= 0 && dy < n && !vis[dx][dy] && grid[dx][dy] == 1)
{
dfs(grid, dx, dy);
}
}
}
int maxAreaOfIsland(vector<vector<int>>& grid) {
m = grid.size(), n = grid[0].size();
int ret = 0; //统计最大数量
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (!vis[i][j] && grid[i][j] == 1) {
cnt = 0;
dfs(grid, i, j);
ret = max(cnt, ret);
}
}
}
return ret;
}
BFS 方法如下:
int dir[4][2] = {
{1,0},{0,1},{-1,0},{0,-1}
};
bool vis[51][51];
int m, n;
int bfs(vector<vector<int>>& grid, int i, int j)
{
int count = 0;
queue<pair<int, int>> q;
q.push({ i, j });
vis[i][j] = true; count++;
while (q.size())
{
auto [a, b] = q.front();
q.pop();
for (int k = 0; k < 4; k++)
{
int x = a + dir[k][0], y = b + dy[k][1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1 &&
!vis[x][y])
{
q.push({ x, y });
vis[x][y] = true;
count++;
}
}
}
return count;
}
int maxAreaOfIsland(vector<vector<int>>& grid)
{
m = grid.size(), n = grid[0].size();
int ret = 0;
for (int i = 0; i < m; i++)
{
for (int j = 0; j < n; j++)
{
if (grid[i][j] == 1 && !vis[i][j])
{
ret = max(ret, bfs(grid, i, j));
}
}
}
return ret;
}
四、总结
- DFS 以深度优先,适合探索所有可能性或路径存在性问题,但对最短路径不敏感。
- BFS 以广度优先,保证最短路径,但内存消耗较大。
- 实战技巧:
- 组合使用DFS和BFS(如IDA*算法)。
- 剪枝优化(尤其在DFS中减少无效搜索)。
- 双向BFS加速最短路径搜索
使用场景如下:
- DFS适用场景:
- 路径探索:如迷宫问题、图的连通分量。
- 回溯问题:如八皇后、全排列。
- 拓扑排序:通过后序遍历逆序实现。
- 复杂状态转移:如游戏树搜索(AlphaGo)。
- BFS适用场景:
- 最短路径:如社交网络中的“六度空间”。
- 层级遍历:如二叉树按层输出。
- 扩散问题:如病毒传播模拟。
- 二分图检测:通过交替染色判断。