不等式解集怎么取_不等式与不等式组5分钟搞定,原来学习很简单

本文回顾了不等式的基本性质及数轴表示法,并通过实例解析了不等式与不等式组的解题步骤,包括分析题意、设未知数、解不等式组及找出符合题意的答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

60108f0047531ee67ce1125a787a1e0c.png

在给大家介绍初中不等式与不等式组习题解法之前,我们先来一起回顾下不等式的基本性质。

①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:

若a> b,那么a±n>b±n;

②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:

若a> b,且n>0,那么an >bn 或a/n >b/n ;

③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:

若a> b,且n<0,那么an<bn 或a/n <b/n ;

其次再来回顾下,如何用数轴表示不等式的解集。

根据我们计算的结果,确定数轴的起点,如果是>或≥就向右画,如果是或

如果两个不等式的解在数轴上表示出来为相向,那么他们的交叉区域就是不等式组的解集;如果两个不等式的解在数轴上表示出来为同向则取最小的(都向左)或最大的(都向右)作为不等式组的解集;如果两个不等式的解在数轴上表示出来为背向,则无解。

与之对应的有一个口诀:“大大取大(都向右取最大),小小取小(都向左取最小),大小小大中间找(两个不等式的解相向),大大小小无处找(两个不等式的解背 相,无解)。”

接下来我们看一个实例,协助大家理解记忆。

459e6d1a13da990f7004bf513e221286.png

在了解这些基础知识以后,我们再通过一道进阶题进行巩固。

6f19348f4c5aa1b1a00d079c541a684c.png

这种题型在填空题中颇为常见,大家要熟练掌握口诀,知道什么时候有解,什么时候无解。当然我们在做与不等式有关的习题时,还经常会遇到应用题,那么关于应用题的求解步骤,大家需要掌握。

(1)分析题意,找出不等关系;

(2)设未知数,列出不等式组;

(3)解不等式组;

(4)从不等式组解集中找出符合题意的答案;

(5)作答。

我们根据一道例题来练习巩固下。

65595ad2acf5eaf661dedcd4a4010dae.png

好了,今天的分享就到这里,大家如果有其他关于不等式与不等式组的问题欢迎留言咨询。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值