
在给大家介绍初中不等式与不等式组习题解法之前,我们先来一起回顾下不等式的基本性质。
①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:
若a> b,那么a±n>b±n;
②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:
若a> b,且n>0,那么an >bn 或a/n >b/n ;
③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:
若a> b,且n<0,那么an<bn 或a/n <b/n ;
其次再来回顾下,如何用数轴表示不等式的解集。
根据我们计算的结果,确定数轴的起点,如果是>或≥就向右画,如果是或
如果两个不等式的解在数轴上表示出来为相向,那么他们的交叉区域就是不等式组的解集;如果两个不等式的解在数轴上表示出来为同向则取最小的(都向左)或最大的(都向右)作为不等式组的解集;如果两个不等式的解在数轴上表示出来为背向,则无解。
与之对应的有一个口诀:“大大取大(都向右取最大),小小取小(都向左取最小),大小小大中间找(两个不等式的解相向),大大小小无处找(两个不等式的解背 相,无解)。”
接下来我们看一个实例,协助大家理解记忆。

在了解这些基础知识以后,我们再通过一道进阶题进行巩固。

这种题型在填空题中颇为常见,大家要熟练掌握口诀,知道什么时候有解,什么时候无解。当然我们在做与不等式有关的习题时,还经常会遇到应用题,那么关于应用题的求解步骤,大家需要掌握。
(1)分析题意,找出不等关系;
(2)设未知数,列出不等式组;
(3)解不等式组;
(4)从不等式组解集中找出符合题意的答案;
(5)作答。
我们根据一道例题来练习巩固下。

好了,今天的分享就到这里,大家如果有其他关于不等式与不等式组的问题欢迎留言咨询。