逻辑斯蒂回归_逻辑回归 - 3 逻辑回归模型

d80029ac61713348a706e348f19cf0a7.png

1 逻辑斯蒂回归模型

二项逻辑斯蒂回归模型是一种分类模型,由条件概率分布

表示,形式为参数化的逻辑斯蒂分布,这里随机变量
取值为实数,随机变量
取值为1或-1。

对于给定的输入实例

,按照上面式可以求得
。逻辑斯蒂回归比较两个条件概率值的大小,将实例
分到概率值较大的那一类。

有时为了方便,将权值向量和输入向量进行扩充,仍记作

,即
,这时候,逻辑斯蒂回归模型如下:

2 模型参数估计

2.1 损失函数

逻辑斯蒂回归模型学习时,对于给定的训练数据集

,其中,
,可以应用极大似然估计法估计模型参数

对于我们用sigmoid函数带入,用对称性

对于不同的模型,

是一样的,乘上这些值对于我们选择最优的模型没有帮助,故略去。

简化上述,可得两种表示方式

  1. 形式一:

  1. 形式二:

下面,通过极大似然估计得到的函数取负数,得到等价的需要最小化的损失函数

  1. 形式一:

  1. 形式二:

所以,损失函数为

  1. 形式一:

  1. 形式二:

2.2 证明损失函数为交叉熵

如果熟悉交叉熵损失函数,那么可以发现对于形式二,其定义就是交叉熵损失函数。我们现在试着从交叉熵的公式推导到形式一,并证明形式一和形式二等价。

形式二与形式一等价推导

如果不太熟悉交叉熵损失函数,可先回顾一下:Cross Entropy Loss Function

对于二分类损失问题,交叉熵损失函数定义为

其中

-

,一般规定正类为1,负类为0;

-

为取正类的概率;

- 对于每个样本上式,其中一项为0;

对于逻辑回归来说,其交叉熵损失函数中,

用逻辑函数带入,得

我们发现

我们可以简化上式,得

所以,我们发现,对逻辑斯蒂回归模型求极大似然估计得到的损失函数,本质上就是交叉熵损失函数

3 学习算法

对于逻辑回归的损失函数,由于是凸函数,所以我们可以使用梯度下降法来求解。现在,我们推导一下求导过程

3.1 形式一:

对于形式一,其损失函数如下

求偏导,令

第一项

第二项

第三项

最后得

通过梯度更新参数:

3.2 形式二:

对于形式二,其损失函数如下

参考交叉熵求导,可得

3.3 证明形式一与形式二等价

对于形式一,我们得到求导的结果为

上述的第三步,主要用到了sigmoid函数的对称性,最后得到的结果与形式二求导的结果一致。

注意到,形式一和形式二对y取负类的取值不同。所以,上述推导的结果和形式二也是一样的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值