已知分布函数求概率密度例题_随机变量分布问题的简便方法之一——公式法!...

本文探讨了一维和二维随机变量分布问题的公式法,适用于已知分布函数求概率密度。通过例题展示了即使在非单调情况下如何应用公式法,并强调了反函数的单调性和连续导数的重要性。特别提到了二维随机变量转换为一维随机变量分布的公式及应用条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

eb6be2761dcf6632b1639c06b70046a7.png

有鉴于在破天学长:二维随机变量分布问题的最强解法——分布函数定义法!已经阐述过分布函数定义法,不仅能够解决二维随机变量的分布,一维也是可以的,但是,类似于我们在前篇文章中的讨论,是不是有省略推导过程,直接得到结果的“公式法”呢?

显然,是有的!

不过,在这里,我们需要分一个类别,依据随机变量维数来分类:包括一维到一维、二维到二维,以及最常见的二维到一维,其他情况也有,只不过,不是考察的重点,所以,本文将以这三部分来探究一下公式法!


1.从一维随机变量到一维随机变量的分布

给定一维连续型随机变量

,其密度函数为
,且
严格单调,其反函数
有连续导数,则
的概率密度函数为

证明:设

为严格递增函数,由分布函数定义法可得

求导得

的概率密度函数为

同理可证

为严格递减函数时的概率密度函数为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值