python将object转换为float_将pypeas.Series从dtype对象转换为float,将错误转换为nans

本文介绍了如何使用`pd.to_numeric`函数将Pandas Series从object dtype转换为float,当遇到无法转换的值时,将其转换为NaN。还展示了如何在DataFrame上应用该转换,以及如何通过`fillna`方法处理缺失值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何将pandas.Series从dtype转换object为float,并将错误转换为nans ?

自v0.17起,convert_objects不推荐使用。

为了一系列转换为数字,使用pd.to_numeric与errors='coerce'论证。

# Setup.

s = pd.Series(['1','2','3','4','.'])

s

0    1

1    2

2    3

3    4

4    .

dtype: object

pd.to_numeric(s, errors='coerce')

0    1.0

1    2.0

2    3.0

3    4.0

4    NaN

dtype: float64

如果您需要NaN填写,请使用Series.fillna。

pd.to_numeric(s, errors='coerce').fillna(0, downcast='infer')

0    1

1    2

2    3

3    4

4    0

dtype: float64

注意,downcast='infer'将尝试在可能的情况下将浮点数向下转换为整数。如果您不想要,请删除参数。

从v0.24 +开始,pandas引入了Nullable Intege

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值