如何用python删除异常值_Python机器学习:异常值查找和处理

本文介绍了如何在Python中处理机器学习中的异常值,包括使用`describe()`检查数值统计信息,绘制散点图和分布图,应用3σ原则、四分位距法,Tukey's test以及绘制箱型图进行异常值检测。这些方法对于提高模型的准确性和性能至关重要。
摘要由CSDN通过智能技术生成

再一次的通过写文章的方式强化记忆,本文内容均来源于以上文章。先说如何处理检测到的异常值?

有些算法对异常值很敏感,如逻辑回归算法。如果不处理,用该算法拟合出来的模型的效果、精确度会很低。有些算法对异常值不敏感,可以不处理异常值。由于目前学习到的3种算法(线性回归、逻辑回归、随机森林),所以还是处理异常值

处理异常值可以像处理缺失值的方法一样:删除或用特殊值代替如何查找到异常值?查看数据的描述统计信息describe()

import pandas

df.describe() #只针对数值类型数据

2. 绘制散点图

3. 绘制数据分布图3σ原则:如果数据呈正态分布,异常值定义为超过3倍标准差的数值

如果数据不满足正态分布,也可以用远离平均值多少倍标准差来定义异常值

4. 四分位距法只取上四分位数(Q1)到下四分位数(Q3)之间的数据。

四分位距法:将数据从小到大排列,只取中间的50%。也就是25%到75%段的数据。可以有效剔除异常值(极大/极小值)。

计算四分位数 Q1、Q3

【例】给出一组数据:2 3 1 4 2 3 9 7 15 99 38 888 19

将它们从小到大重新排序:1 2 2 3 3 4 7 9 15 19 38 99 888

找出从整个数据的中位数Q2:7

找出从极小值到Q2这段数据的中位数Q1:3

找出Q2到极大值这段数据的中位数Q3:19

5. Tukey's test只取最小估计值到最大估计值之间的数据。

最小估计值=Q1-k(Q3-Q1)

最大估计值=Q1+k(Q

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值