用Java矩阵的加减数乘运算_线性代数(2):矩阵运算之矩阵加法、乘法、除法...

授人予鱼不如授人予渔,在《线性代数》的学习中,方法尤为重要。下面就让我们一起解决《线性代数》中令人头痛的——矩阵的加法运算吧!

前言:想要学会《线性代数》中的——矩阵的加法运算问题,我们这次的学习将按照下面的步骤进行:(1)       了解矩阵与线性方程的对应关系;

(2)       了解矩阵的定义;

(3)       特殊矩阵;

(4)       矩阵加法运算规则;

(5)       例题讲解;

2

让我们首先了解矩阵与线性方程的对应关系,如下图:

e16ca0b41b256a07ed5d389dc32c1bb4.png

了解矩阵的定义,如下图:

c8eda19cd4da1e7001269234b9cb9e96.png

特殊矩阵之零矩阵,如下图:

6628d9b033080f2bdcb352f9370d2a65.png

特殊矩阵之行/列矩阵,如下图:

8cc76af63dfa09c212e0803961dee2c9.png

特殊矩阵之方阵,如下图:

7eb336ac885a235f31c554e4a4422116.png

特殊矩阵之对角阵,如下图:

c94a2cbc96f0a7c1805c4f545d965296.png

特殊矩阵之数量矩阵,如下图:

c6d01af9b8d8a1936358ce4fb87b445c.png

特殊矩阵之单位矩阵,如下图:

32f7344db9d008ce06d48123aa330872.png

矩阵加法运算规则,如下图:

3ff55598e22a6147422ab43b45f44d85.png

例题讲解,如下图:

f8a6efe8331e4b823faa753bfe743297.png

矩阵与数乘

让我们首先了解数与矩阵乘,如下图:

0a9f279000144d8a2026892fae4dbfe5.png

数乘矩阵的运算规则,如下:

74746d25162549bfe1f0a51ed7369a09.png

数与矩阵乘即将每一项都乘以系数,如下例:

80b5394fe987bd4c5baefcbfc08dc28c.png

矩阵相乘

矩阵相乘,必须满足矩阵A的列数与矩阵B的函数想等,或者矩阵A的行数与矩阵B的列数相等,如下图:

f3459f7f39caa4d17293b076d536703c.png

矩阵相乘运算规则,如下图:

66d07c59e3166d9eae5b1c528c82b2f4.png

矩阵相乘例子,如下:

8cee85c68bfe0c54d23265671f19cd09.png

cc3ec7682f0ff74a93032e844ca46c34.png

da35beb68d0128245675fd1d284dd66f.png

73935cf0aee87d4fb2662af5e8280404.png

矩阵相乘注意要点

矩阵相乘注意点1,如下图:

49bb151eaedba718a62dee8d09726c97.png

矩阵相乘注意点2,如下图:

132ea5bede17f040db2cf9a1f8f85b61.png

用Excel计算矩阵

打开数据表,假设数据如下所示:

4571e455e2a282420085579915b53575.png

根据这两个矩阵,做如下运算:矩阵加法,减法,乘法,矩阵的逆矩阵。

2,步骤

(1)选择E2:G4单元格区域,输入“=”,用鼠标选择A2:C4单元格区域,输入“+”,用鼠标选择A6:C8单元格区域,同时按Ctrl+Shift+Enter键,矩阵加法计算结果如下。

b57d4dc397838032a24476203f1a2a15.png

(2)选择E6:G8单元格区域,输入“=”,用鼠标选择A2:C4单元格区域,输入“-”,用鼠标选择A6:C8单元格区域,同时按Ctrl+Shift+Enter键,矩阵减法计算结果如下。

13e4b8e5860e930923c8279f58d82dd0.png

(3)选择E2:G4单元格区域,“公式”选项卡,“函数库”工具箱,“插入函数”工具,找到MMULT函数,单击“确定”按钮。

(4)在弹出的MMULT函数参数对话框中进行设置。

单击“Array1”右边的文本框,用鼠标选择“A2:C4”单元格区域,单击“Array2”右边的文本框,用鼠标选择“A6:C8”单元格区域,同时按Ctrl+Shift+Enter键.得到矩阵相乘的结果如下所示。

de3c03a52cd40d3104247b8c9a8dc7cf.png

4efc42f770f9e5bcd524f3a4e3685f01.png

矩阵转置

输入初始矩阵到单元格中后,选中该矩阵区域,然后复制,右键粘贴,选择“转置”即可。如附图所示。

a2639b006ef9f6a296f7bc2ff6e35958.png

392605a5473718cd6c9c5395061edb1d.png

使用MDETERM 函数计算矩阵行列式的值

如果有一个m×n阶的矩阵A,设|A|级该矩阵对应行列式的值。这里使用上面矩阵转置的矩阵为示例数据。输入该公式后,发现返回的是非法数据警告,原因在于行列式的值必须符合行列式的规则,行数和列数必须相等,所以计算矩阵行列式的值的前提是该矩阵为方阵。

eac8ad38df9c7ec9edb3f39595eb3142.png

如附图所示,计算方阵对应行列式的值就ok了。

ccfaf7867ebdae7f318d0806d62172e1.png

利用MINVERSE函数求矩阵的逆矩阵

注意只有方阵才有逆矩阵,所以该矩阵必须是一个n阶方阵。在单元格中输入“=MINVERSE(数组)”回车即可得到该矩阵的逆阵。演示如附图所示。

179e4e87c91ea8334a5cac012312e72c.png

步骤1所示的附图并没有计算出逆阵,而是返回了一个#NUM!,原因在于如果矩阵可逆,则|A|不会等于0,也就是说行列式的值为0的矩阵没有逆阵,由于示例的矩阵行列式的值为0,所以不存在可逆阵。附图为存在可逆阵的一个示例。注:公式必须你数组公式输入,然后按下F2,再按 Ctrl+Shift+Enter

7027f2fbd02dd55eb8c855c16af8d4f7.png

勇哥测试的结果:

3db7194f22c6a5c14f452355baeb0455.png

---------------------

作者:hackpig

来源:www.skcircle.com

版权声明:本文为博主原创文章,转载请附上博文链接!

#转载请注明出处 www.skcircle.com 《少有人走的路》勇哥的工业自动化技术网站。如果需要本贴图片源码等资源,请向勇哥索取。

收藏 | 0点赞 | 0打赏作者

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值