医学图像分类_体素科技:深钻小数据下的医学图像分割

体素科技在《Medical Image Analysis》发表论文,探讨了在标注稀缺和弱标注情况下,如何利用深度学习解决医学图像分割问题。他们提出ErrorNet、代理监督学习和Models Genesis等方案,以应对小样本数据和不完美标注的挑战,提高医学图像分割的准确性。
摘要由CSDN通过智能技术生成

75fed0d50fdc0283124bf03c295a70ed.png

自UNet的提出,卷积神经网络成为了医学影像分割的标配算法。近年来,随着更加先进的网络结构的陆续提出,医学影像分割的准确率被不断刷新。然而,网络结构的改进对算法性能的提升渐渐趋于饱和,医学影像分割的另一个问题——高质量标注数据集稀缺——成为了限制算法性能亟待解决的问题。在医学影像领域,图像数据和高质量的标注数据的获取都十分的昂贵,现有的医学影像数据集普遍存在着标注稀缺和弱标注这两个问题,严重限制了算法在生产环境中的应用。针对这一难题,体素科技的科学家们回顾了以往的研究成果, 针对业务设计了创新的算法。最新研究论文《Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentation》近日在医学影像分析顶级期刊《Medical Image Analysis》上发表,主要介绍了体素科技在小数据下的医学图像分割这一问题上取得的一些研究成果,并希望能提高大家对可用于处理不完整医学图像分割数据集的技术的认识。

bb69ceaa6c6fc602626365b24ae29a60.png发表回顾性文章总结以往研究成果目前先进的神经网络分割算法需要大量的高质量标注图像进行训练。然而现实情况中,高质量的标注图像却很难获得,尤其对于医学影像分割,图像数据和标注都很昂贵。针对这个问题,近期大量的研究工作试图解决不完善数据集的两类典型问题:

  • 标注稀缺。数据集中只有极稀少的图像数据有分割标注。

  • 弱标签。数据集中的图像数据只有部分标注、或者标注带有噪声、或者只有图像级的类别标签没有逐像素的分割标注。

体素科技在发表到医学影像分析顶级期刊《Medical Image Analysis》的文章《Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentatio

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值