一个点到多边形顶点距离相同_二分图的最大匹配、最小顶点覆盖、最大独立集等价的线性规划证明...

e5ffb4c1a7dd4d9218a7b525cc3f33df.png

感谢 @Chao Xu 的指正。

首先声明一下,这里的等价指的是可以规约,而不是指相等,标题无误。

这个证明源自我跟 @hehelego spinach 的一次口胡,随便乱搞,口胡出了这么个证明。

c68b046f5cf9493f50e77bfd766707b8.png

于是这篇文章就诞生了2333


我觉得这三个问题的内容应该不用我再写一遍了吧(逃

最大匹配:给定一个二分图G,在G的一个子图M中, M的边集{E}中的任意两条边都不交汇于同一个结点,则称M是一个匹配,|M|最大的匹配称为最大匹配。
最小顶点覆盖:假如选了一个点就相当于覆盖了以它为端点的所有边,最小顶点覆盖就是选择最少的点来覆盖所有的边。
最大独立集:选出一些顶点使得这些顶点两两不相邻,则这些点构成的集合称为独立集。找出一个包含顶点数最多的独立集称为最大独立集。

以上就是二分图上最经典的三个问题,也是这次所要围绕的主题。这三个问题的等价性证明在网上有很多,主要都是通过图论模型,采用构造和反证的方法证明,文字叙述有点长(懒得读),比较繁琐。

在这个代数证明中,将会从最小顶点覆盖出发,推出最大独立集,再推到最大匹配上,由于代数变形的等价性,所以并不需要再反向推回去,只要这么推一遍即可。

首先考虑如何将图论模型转化成代数模型。

对于最小顶点覆盖问题,它等价于一个线性规划问题。

为二分图的边集,
为点集。
表示二分图左半部分的第
个点是否被选择,被选则
,不被选则
表示右半部分的第
个点是否被选,取值的定义与
类似。

则最小顶点覆盖可以用如下的线性规划来表示

这就成功地将图论模型转化到了代数模型上,下一步理所当然的就是代数变形

Part1 最小顶点覆盖

最大独立集

进行变量代换,令

,代入原式

其中

是二分图中的点数

再赋予

实际意义,它们的实际意义与
类似,同样是1代表选,0代表不选。

考虑第一个不等式

,它表明一条边的两个顶点最多只能有一个被选,很显然这代表我们选出来的点要是一个独立集。

然后考虑目标函数,可以发现

是一个不变的常数,要使目标函数最小,也就相当于使减去的数最大。

使减去的数最大相当于让尽可能多的

等于1,由实际意义,这就是要选出尽可能多的点,而且还要让这些点是独立集,那么这个线性规划对应的就是最大独立集。

因为目标函数是

,而
代表了独立集的大小,那么我们就得到了这条极为经典而又重要的结论,二分图上最小顶点覆盖等于节点数减去最大独立集,对一般图也有这条结论,只要不分开设
,
两个变量,所有点都用
表示,通过同样的推导就可以得到,这是十分trivial的,读者自证不难(划掉)。

(我觉得还是挺简洁易懂的吧233)

Part2 最小顶点覆盖

最大匹配

现在推出了跟最大独立集等价,下一步是推到最大匹配上。

(变量代换?不存在的,我们想用变量代换证明,推了几个小时都没推出来)

冷静分析一波为什么简单的变量代换行不通,主要是以下两个原因:

1.现有的所有变量都是关于点的,跟边没有关系

2.原本的线性规划是求min,而最大匹配是求max

(凉了凉了,大家都散了吧)

所以现在我们要做的方向就是,颠覆现有的全部变量,将min转化到max上。

没错,就是原问题的对偶问题。

首先现在有了原问题

注意这里去除了0-1规划的限制,只要求变量非负。首先可以发现在这样的限制下,变量的取值只能是在

内,否则一定不是最优解。其次,我们还需要证明最优解下,它们的取值都是整数,关于这一点的证明稍后阐述。

写出它的对偶问题

显然这两个问题都具有最优解,根据强对偶性定理,对偶问题与原问题的最优解相等。

考虑对偶问题的实际意义。根据第一个式子,可以得到

,那么就可以给
赋予这样的实际意义,其值为0则不选第
条边,为1则选。

易知,这个对偶问题就是最大匹配。所以便得到了二分图上另一条重要的结论,最小顶点覆盖等于最大匹配。

现在来证明最优解下,所有变量的取值都是整数,否则刚刚的推理是不成立的。

首先做一些定义,对于二分图中的一条边

,如果在原问题的线性规划的解中有
成立,那么称这条边为tight edge。
为二分图中的左半部分点,
为右半部分点。对于
,定义
为通过tight edge与
中的点邻接的点。

构造这样一个求二分图

中最大匹配的算法

其中该算法中第7行的

的存在性由二分图的Hall定理保证,因为
不是最大匹配,完美匹配是比最大匹配更强的性质,故也不存在完美匹配,所以
一定存在。

在这个算法当中,我们每次给

带来的变化量
一定是整数,因为初始情况下
为0,因而在最终情况下,这两者也一定为整数。同时我们找到了最大匹配,根据之前的推理,最大匹配和最小顶点覆盖对偶,最大匹配达到最优解时,最小顶点覆盖也达到了最优解,这两者的解均为整数,因而等价性得证。

emm到这里不得不说句真香,这个证明方法已经相比纯图论的证明复杂多了。


我知道Part2很(bu)清(you)真(hao),所以在这里再讲一下不用强对偶性定理的证明方法。

考虑最小顶点覆盖的线性规划对应的网络流模型,它实际上对应了如下图所示的最小割模型

942212bdb5cd4703434c72fa07102785.png

S是源点,T是汇点,图是我随便脑补出来的,理解到意思就好233

根据线性规划的限制,

,这个网络流上所有边的容量都应该为1。根据最大流最小割定理,我们要求的最小割就等于这个网络流的最大流。

不难发现,这个网络流的最大流对应的就是二分图的最大匹配,于是就同样得到了最小顶点覆盖等于最大匹配。

另外补充一下,最大流最小割定理实际上是强对偶性定理在网络流问题上的特化形式,最大流和最小割是一组对偶的问题,因而这两个证明方法在本质上是相同的,并无两样。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值