编译原理论文_从元学习到像素生成预训练,ICML 2020 的 10 篇有趣论文

作者:Ram Sagar

编译:IvyLee

原文:10 Interesting Papers To Look Forward To At ICML 2020[1]

题图出处:pixbay

ICML2020 于本月18号结束,今年的ICML 共收到了4990篇投稿,最终收录1088篇。Analytics India 杂志栏目作者Ram Sagar 从入选论文中选出了他眼中的10篇有趣研究。

Ram Sagar 拥有机器人学硕士学位,兴趣在于研究人工智能的发展,本文撰写在线发表于analyticsindiamag.com,biendata小分队对文章做了编译供大家阅读。

1.重新思考元学习的批归一化

元学习(Meta-learning)依赖于深度网络,这使得批归一化(batch normalization)成为元学习pipeline的重要组成部分。但是,存在一些情况可能使常规批归一化无效,这引起了作者对于归一化的重新思考。作者评估了用于元学习场景的一系列批归一化方法,开发了一种新颖的方法 —— TaskNorm。实验表明,不论对于基于梯度(gradient-based),还是无梯度(gradient-free)的[元学习]方法,这种批归一化的选择对分类准确性和训练时间都具有显着影响,此外,TaskNorm 还能够持续提高性能。

原论文:Rethinking Batch Normalization for Meta-Learning[2]

2.RNN 和 LSTM 有长期记忆吗?

此论文提出了一个问题 —— RNN 和 LSTM 是否具有长期记忆?作者试图从统计学的角度回答这一问题,证明 RNN 和 LSTM 不具备统计意义上的长期记忆。他们为长期记忆网络引入了新的定义,该定义要求模型权重以多项式速率衰减。为了验证这一理论,作者将 RNN 和 LSTM 转换为长期记忆神经网络,并且在具备长期记忆性质的数据集上验证了它们的优越性。

原论文:Do RNN and LSTM have Long Memory?[3]

3.像素生成预训练

c437c450bbf31b939963f9b89b9b19d1.png

受到自然语言的无监督表征学习(unsupervised representation learning)的启发,OpenAI 的研究人员研究了类似的模型是否可以学习图像的有用表征。他们训练一个序列 Transformer,自回归预测(auto-regressively)像素,无需结合 2D 输入结构的信息。尽管是在没有标注的低分辨率 ImageNet 上进行的训练,他们发现 GPT-2 缩放模型可以通过线性探测、微调和低数据分类来学习强大的图像表征。

原论文:Generative Pretraining from Pixels[4]

4.改进 RNN 的门控机制

2151abae4d5e33a204d3711db8654799.png

门控机制广泛用于神经网络模型,可以使梯度更容易通过深度或时间反向传播。在此论文中,作者通过对标准门控机制提出两种修改来解决延迟的关键问题,无需额外的超参数,并且在门接近饱和时提高了门的可学习性。论文中展示了其简单的门控机制可在图像分类、语言建模和强化学习方面稳健地提高循环模型的性能。

原论文:Improving the Gating Mechanism of RNNs[5]

5.学习内在奖励可以捕获什么?

3657eacdf7305cf9f42860119b2b4c86.png

强化学习(Reinforcement Learning,RL)智能体的目标是奖励最大化。在此论文中,作者们认为奖励函数自身可以成为学习知识的好地方。为了进一步研究,他们提出了一个可伸缩的元梯度(meta-gradient)框架,跨多个生命周期学习有用的内在奖励函数,从而表明,学习并捕获有关长期探索和开发的知识到奖励函数是可行的。

原论文:What Can Learned Intrinsic Rewards Capture?[6]

6.深度 ReLU 网络逆向工程

人们普遍认为,神经网络无法从输出中复现,因为神经网络以高度非线性的方式依赖于自身的参数。此论文对这一观点进行了研究。作者声称,仅观察输出,就可以确定未知的深度 ReLU 网络的架构、权重和偏差。通过将区域边界集合分解为与特定神经元相关的组件,恢复神经元的权重及其在网络中的排列是有可能的。

原论文:Reverse-Engineering Deep ReLU Networks[7]

7.表征学习的自由能原理

此论文将机器学习与热力学的形式联系起来,表示迁移学习(transfer learning)的表征质量。文中讨论了模型的速率、失真和分类损失位于凸形的所谓“平衡表面”(equilibrium surface)上的情况,规定了在约束条件下遍历该表面的热力学过程,演示了如何使用此过程将表征从源数据集传输到目标数据集,同时保持分类损失不变。

原论文:A Free-Energy Principle for Representation Learning[8]

8.深度散度学习

0bbc4926d9a57dbb180417994e604d21.png

本文介绍了深度 Bregman 散度 —— 基于使用神经网络对功能性 Bregman 散度进行的学习和参数化。作者描述了一种深度学习框架,用于学习一般功能性 Bregman 散度,并在实验中表明,与现有的深度度量学习方法相比,该方法在基准数据集上具有更高的性能。这项研究还对有关的新颖应用做了讨论,包括半监督分布式聚类问题和用于无监督数据生成的新损失函数。

原论文:Deep Divergence Learning[9]

9.通过特征量化改进 GAN 训练

0349fe3f943b9257c2d726318a6b9d91.png

这项研究提出了针对判别器的特征量化(Feature Quantization,FQ),以便将真实和伪造的数据样本都嵌入共享的离散空间中。作者表示,这种方法可以轻松地插入到现有的 GAN 模型,而训练所需的计算量却很少。他们将 FQ 应用于生成图像的 BigGAN、人脸合成的 StyleGAN,以及无监督图像到图像转换的 U-GAT-IT。结果表明,FQ-GAN 可以在各种任务上大幅度提高 Frechet-Inception 距离得分(Frechet-Inception Distance score,FID),从而实现新的最先进性能。

原论文:Feature Quantization Improves GAN Training[10]

10.LEEP:一种用于评估分类器学习过的表征可传递性的新方法

对数期望经验预测(Log Expected Empirical Prediction,LEEP)是一种新方法,用于评估分类器学习过的表征的可传递性。即使对于小型数据或不平衡的数据,LEEP 也可以预测传输和元传输学习方法的性能和收敛速度。作者指出,LEEP 的性能优于最近提出的可迁移性度量(transferability measures),例如负条件熵(negative conditional entropy)。从 ImageNet 转移到 CIFAR100 时,与最佳竞争方法相比,LEEP 可以实现高达 30% 的改进。

原论文:LEEP: A New Measure to Evaluate Transferability of Learned Representations[11]

3a0ca3249d65f0209decefa76b3631bd.png图表来源:Sergei Ivanov[12]

查看所有论文列表[13]

References

[1] 10 Interesting Papers To Look Forward To At ICML 2020: https://analyticsindiamag.com/papers-icml-2020-research-conference/[2] Rethinking Batch Normalization for Meta-Learning: https://arxiv.org/pdf/2003.03284[3] Do RNN and LSTM have Long Memory?: https://arxiv.org/pdf/2006.03860.pdf[4] Generative Pretraining from Pixels: https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf[5] Improving the Gating Mechanism of RNNs: https://arxiv.org/pdf/1910.09890[6] What Can Learned Intrinsic Rewards Capture?: https://arxiv.org/pdf/1912.05500[7] Reverse-Engineering Deep ReLU Networks: https://arxiv.org/pdf/1910.00744.pdf[8] A Free-Energy Principle for Representation Learning: https://arxiv.org/pdf/2002.12406[9] Deep Divergence Learning: https://arxiv.org/pdf/2005.02612[10] FQ-GAN: https://arxiv.org/pdf/2004.02088.pdf[11] LEEP: A New Measure to Evaluate Transferability of Learned Representations: https://arxiv.org/pdf/2002.12462[12] Sergei Ivanov: https://medium.com/criteo-labs/icml-2020-comprehensive-analysis-of-authors-organizations-and-countries-c4d1bb847fde[13] 查看所有论文列表: https://icml.cc/Conferences/2020/Schedule?type=Poster

适用人群 本论文用于以下专业读者: 计算机视觉和机器学习领域的研究人员和学者。 对生成对抗网络(GANs)在视频生成任务上的应用感兴趣的工程师和开发者。 探索深度学习在视频处理和动作识别中应用的数据科学家。 人工智能领域的学生和教育工作者,特别是那些专注于视频内容生成和分析的。 使用场景及目标 研究与开发:研究人员可以使用DVD-GAN模型来探索视频生成的新方法,提高视频合成和预测的质量和效率。 教育应用:作为教学案例,帮助学生理解GANs在视频处理领域的应用,以及如何评估生成模型的性能。 工业应用:在娱乐、虚拟现实、游戏开发等行业中,利用DVD-GAN生成的视频内容创造新的用户体验。 数据分析:数据科学家可以使用DVD-GAN来模拟视频数据,用于增强现有数据集,或进行数据增强以改善机器学习模型的训练。 技术评估:研究人员和开发人员可以利用论文中提到的评估指标(如IS和FID)来比较不同模型生成的视频质量。 论文的目标是通过展示DVD-GAN在复杂视频数据集上的应用,推动视频生成技术的发展,并为未来在更大规模和更复杂数据集上的模型训练和评估提供基准。通过这项研究,作者希望强调在大型和复杂的视频数据集上训练生成模型的重要性,并期待DVD-GAN能成为未来研究的参考点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值