python实现矩阵和array数组之间的转换
前言:
array数组要转换成矩阵(matrix)数据类型才能进行一系列的线性运算。matrix类型也有时候要转换成array数组。
代码:
1.array转matrix:用mat()
a = arange(3*2).reshape(3,2)
print('array类型:')
print(type(a))
print(a)
b = mat(a)
print('matrix类型:')
print(type(b))
print(b)
输出:
array类型:
[[0 1]
[2 3]
[4 5]]
matrix类型:
[[0 1]
[2 3]
[4 5]]
2.matrix转array:matrix.A
b = b.A
print(type(b))
print(b)
输出:
[[0 1]
[2 3]
[4 5]]
以上这篇python实现矩阵和array数组之间的转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
时间: 2019-11-27
本文实例讲述了python实现将元祖转换成数组的方法.分享给大家供大家参考.具体分析如下: python的元祖使用一对小括号表示的,元素是固定的,如果希望添加新的元素,可以先将元祖转换成数组列表,再进行操作 colour_tuple = ("Red","Green","Blue") colour_list = list(colour_tuple) assert colour_list == ["Red","Green
在使用列表.数组和矩阵的过程中,经常需要相互转换.特此总结相互间转换的过程及结果,供大家参考. 第三方包:numpy import numpy as np mylist = [[1, 2, 3], [4, 5, 6]] # 列表 print(type(mylist)) print(mylist, end='\n\n') myarray = np.array(mylist) # 列表转数组 print(type(myarray)) print(myarray, end="\n\n") m
NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵
前提: list以及array是python中经常会用到的数据类型,当需要对list以及array进行文件的读写操作的时候,由于write函数参数需要的是一个str,所以这时就需要对list或者array进行str的转换了. list和array的不同: 在进行转换之间先研究下python中list和array(np.array)的不同: 1.list是python中内置的数据类型,其中的数据的类型可以不相同,如java中List也可以不用相同的数据,但是为了格式的统一,就要用到泛型或者Arra
本文实例讲述了Python实现字符串与数组相互转换功能.分享给大家供大家参考,具体如下: 字符串转数组 str = '1,2,3' arr = str.split(',') print a 运行结果: 数组转字符串 #方法1 arr = ['a','b'] str1 = ','.join(arr) print str1 #方法2 arr = [1,2,3] #str = ','.join(str(i) for i in arr)#此处str命名与str函数冲突! str2 = ','.join(
1.ndarray转换成matrix import numpy as np from numpy import random,mat r_arr=random.rand(4,4) print('r_arr',r_arr) r_mat=mat(r_arr) print(r_mat.I)#求逆 运行结果: r_arr [[ 0.65603592 0.39908438 0.44722351 0.92652759] [ 0.32357477 0.45384697 0.31687359 0.
实例如下所示: >>>from compiler.ast import flatten >>>X matrix([[ 1, 17, 13, 221, 289, 169], [ 1, 17, 14, 238, 289, 196], [ 1, 17, 15, 255, 289, 225], [ 1, 18, 13, 234, 324, 169], [ 1, 18, 14, 252, 324, 196], [ 1, 18, 15, 270, 324, 225], [ 1, 1
以下的例子,将32x32的二维矩阵,装换成1x1024的向量 def image2vector (filename): returnVect=zeros((1,1024)) f=open(filename) for i in range (32): lineStr =fr.readline() for j in range (32): returnVect[0,32*i*j]=int(lineStr[j]) return returnVect 以上这篇Numpy 将二维图像矩阵转换为一维向量的方
如下所示: INPUT = c_int * 4 # 实例化一个长度为2的整型数组 input = INPUT() # 为数组赋值(input这个数组是不支持迭代的) input[0] = 11 input[1] = 2 input[2] = 3 input[3] = 4 dll.teststring.restype = c_char_p # bytes(aaaa, encoding="utf-8") a = dll.teststring(input,4) MYLIBDLL char*
如下所示: # 矩阵的转置 def transpose(list1): return [list(row) for row in zip(*list1)] list1 = [[1, 4], [2, 5], [3, 6]] print(transpose(list1)) # [[1, 2, 3], [4, 5, 6]] 矩阵转置 用zip将一系列可迭代对象中的元素打包为元组,之后将这些元组放置在列表中,两步加起来等价于行列转置. # 矩阵逆转 def invert(list1): return [
python3中,list有个reverse函数,用来反转列表元素,但是如果想要反转部分元素呢? a = [1,2,3,4,5] a[0:3].reverse() # not work!!! print(a) >>[1, 2, 3, 4, 5] a = [1,2,3,4,5] c = a[0:3] c.reverse() #曲线救国方法,就是开销大了点 a[:3] = c[:] print(a) >>[3, 2, 1, 4, 5] a = [1,2,3,4,5] a[0:3] =
计算机为数组分配一段连续的内存,从而支持对数组随机访问: 由于项的地址在编号上是连续的,数组某一项的地址可以通过将两个值相加得出,即将数组的基本地址和项的偏移地址相加. 数组的基本地址就是数组的第一项的机器地址.一个项的偏移地址就等于它的索引乘以数组的一个项所需要的内存单元数目的一个常量表示(在python中,这个值总是1) import array #array模块是python中实现的一种高效的数组存储类型.它和list相似,但是所有的数组成员必须是同一种类型,在创建数组的时候,就确定了数组
本文实例总结了Thinkphp将二维数组变为标签适用的一维数组方法.分享给大家供大家参考.具体实现方法如下: 方法一: 复制代码 代码如下: $projectList=arr1tag($projectList,array('','请选择'),'project_name'); //其中$list为传值过来的二维数组,$default为默认值,$k为指定的表字段 function arr1tag($list,$default='',$k=''){ $tmp=''; if(array(
一个简单的PHP循环一维数组的实例,先是把字符串按照一定的规则进行转换成为数组,然后再进行遍历输出,实际是一个很简单的方法,因为最近做的一个二维数组结构图搞得很头疼,所以一时半会儿想不起来如何进行遍历输出了.简单的实例代码如下: foreach遍历数组 <?php /* * 数组的遍历 */ $language = array("French",'German','Russian','Chinese','Hindi','Quechu'); foreach ($language a
如下所示: import numpy new_list = [i for i in range(9)] numpy.array(new_list).reshape(3,3) 借助numpy库: 以上这篇python numpy 一维数组转变为多维数组的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
这篇文章主要介绍Python的numpy库中的一些函数,做备份,以便查找. (1)将矩阵转换为列表的函数:numpy.matrix.tolist() 返回list列表 Examples >>> >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> x.tolist() [[0, 1, 2