insert 数组_【数据结构与算法】用动图解说数组、链表、跳表原理与实现

446e1d4be4a3d682ce683e5d47c162d5.png

「初」前言

在学习数据结构与算法的过程中,感觉真的是一入算法深似海,但是越学越觉得有趣。不过我们会发现在终身学习的过程中,我们都是越学越多,不知的也越来越多,但是更渴望认知更多的知识,越是对知识感兴趣。

本期讲说最常见的数据结构类型分别有数组、链表、跳表。这一期我们一起来了解它们的原理与实现。

「一」数组 Array

  • Java, C++: int a[100]
  • Python: list = []
  • JavaScript: let x = [1, 2, 3]
当今的高级数据语言中,对于数组里面的类型没有严格要求,相对来说比较多元化。
在语言下有一个标准的叫法叫做 泛型,也就说任何一个单元类型都可以放入数组。

数组的原理

  • 数组底层的硬件实现是有一个内存管理器的;
  • 当我们向计算机申请数组时,实际上计算机是在内存中给我们开辟了一段连续的地址
  • 每一个地址都是可以通过内存管理进行访问;
  • 无论我们是访问第一个值,还是里面其中一个值,时间复杂度都是常数O(1)
  • 并且可以随意访问任何一个元素,所以它的访问速度非常的快,也是数组的特性之一;

4b47cc9aaa067d4026b24d5dbc07a6f6.png

数组的缺陷

数组的问题关键是在增加与删除元素的时候。

数组插入操作

假设现在我们定义了一个[A, B, C, E, F, G]的数组,然后我们要插入一个D到这个数组里面。现在假设我们要把D插入到指针3的位置,我们要怎么实现呢?

  1. 首先我们需要把EFG都挪动到各自的下一个指针;
  2. 然后加入D到指针3上;

详细实现效果请查看下效果图:

765b072897d850b74d807f1a51ad1ef8.png
因为插入操作的时候,我们需要挪动平均一半的元素( N/2),所以数组每次插入元素时,平均就是 O(n)的时间复杂度。

数组删除操作

删除元素也是同理的,假设我们现在有[A, B, C, Z, D, E, F]的一个数组,我们现在需要把Z从这个数组中移除。实现逻辑如下:

  1. 首先把指针3的值置空;
  2. 然后把DEF三个值往上移动一个位置;
  3. 最后在例如Java的数组语言中,我们需要把数组的长度减一即可;

具体的实现效果看下图:

33c5104ff32d0924872953943ef6fde7.png
因为删除操作的时候,也是需要挪动平均一半的元素( N/2),所以数组每次删除元素时,平均就是 O(n)的时间复杂度。

数组时间复杂度

操作类型时间复杂度查询上一个 (prepend)O(1)查询下一个 (append)O(1)查询某一个元素 (lookup)O(1)新增结点 (insert)O(N)删除结点 (delete)O(N)

3f154de81e2cbe07218adf9897cda9a1.png

「二」 链表 Linked List

下来我们一起来看看另外一个数据结构链表。链表的诞生就是为了解决数组的缺点

47aeddbfd4977287e49ec9b343c0f24c.png

链表的特性:

  • 每一个元素有两个成员变量valuenext指针(指向下一个元素);
  • 每一个元素串在一起后与数组是非常相似的结构;
  • 与数组不一样的就是每一个元素一般都要定义一个Class):一般都叫一个Node
  • 单链表:只有一个next指针;
  • 双向链表:拥有一个prev或者previous指针指向前一个元素;
  • 头指针用Head来表示,尾指针用Tail来表示;
  • 尾部指针的next指针都会指向一个None(空);
  • 循环链表:尾指针的next指针指向头指针;

链表添加结点

下来我们一起来看看一个链表新添加一个元素的原理:

  1. 首先为新的元素创建一个结点(Node);
  2. 然后我们需要把这个新元素插入到连个元素之间;
  3. 把前一个元素的next指针指向新的Node
  4. 把新元素的next指针指向后一个元素;

具体实现效果看下图:

bde263602488d48ebfe1628e800ec234.png
链表的插入操作总共是 2次,但是常数次的,所以 时间复杂度为 O(1)

链表删除结点

接下来我们一起来看看删除结点的原理,删除与新增大致上是一样的,是

  1. 在需要把删除的结点的前一个nodenext,改为删除结点的下一个node

具体的实效效果看下图:

a7d6eb846c081732bebac2b0c427d646.png
链表的删除操作 只需要一次,所以 时间复杂也是 O(1)

链表时间复杂度

通过分析链表的新增和删除操作,我们发现链表中并没有像数组一样需要挪动一半或者多个的元素的位置和复制元素等。也是因为这样它的移动和修改操作的效率非常高为O(1)。 但是在查询的时候,当我们需要访问链表中某一个值的时候,就相对变得复杂了,为O(N)

我们来看看一下的链表时间复杂度:

操作类型时间复杂度查询上一个 (prepend)O(1)查询下一个 (append)O(1)查询某一个元素 (lookup)O(N)新增结点 (insert)O(1)删除结点 (delete)O(1)

看完 ArrayLinked List的两种数据结构的特性后,我们可以发现是 没有完美的数据结构的。如果有完美的那就不需要Array或者Linked List并存了。所以我们需要看 场景来决定我们需要用那种数据结构。

3f154de81e2cbe07218adf9897cda9a1.png

「三」跳表 Skip List

后续有技术科学家对链表进行了优化,诞生出第三个数据结构叫做跳表(Skip List)。跳表可能有些小伙伴没有怎么接触过,但是其实它一直都在我们身边的应用中使用。在Redis里面就使用了跳表。不过面试过程中并不会给大家出跳表的题目来写程序,所以我们只需要理解它的原理即可。

跳表的核心是为了优化链表元素随机访问时间复杂度过高的问题 (O(n))。

这个优化的 中心思想其实是 贯穿于整个算法数据结构,甚至也贯穿于整个数学与物理的世界。那就是 升维思想 / 空间换时间 - 顾名思义就是在原有的链表中添加第二维的链表叫 第一级索引

添加第一级索引

我们看看下面图什么是一级索引

3a88223458e9c1c138d0459f667161f5.png
  • 首先索引的第一个索引指向头 (head),也就是第一个元素 (1)
  • 然后索引的下一个元素指向的就是next + 1,也就是第三个元素 (4)
  • 换句话来说,就是第一级索引的元素比原始链表走快2倍的速度

假设现在我们需要访问结点7,添加了这个索引后,是怎么提高了访问速度呢?我们来看看下面的图:

f19a8a3b1df18f465e678efa442e7822.png
  • 首先从第一级索引中走到索引7;
  • 然后从索引7下来找到第7个结点;
  • 这里总共的步数4步降到2步就能找到第7个结点;
虽然说速度是快了,但是 能不能更快呢?可以的, 只需要我们再叠加维度,用空间换时间的中心思想即可

添加第二级索引

第二级索引比第一级的索引再走快一步,那就是每次走两步,也就是next+2。这样访问结点的时候就更快了。首先我们来看看加入第二级索引后的结构图:

451c2feda6a16247cd24e06ffca51fec.png
  • 同理二级索引的第一个是指向一级索引的第一个,最终指向的是头 (head);
  • 二级索引的第个人结点指向的就是结点7,因为二级索引是next+2每次跳3步的进行步伐;

加入了二级索引后,我们访问结点7的时候是怎么样的呢?

76d227f18f80c877baece1d11be107ac.png
  • 维度升级到第二级时,只需要1步就能到达结点7的索引;
  • 加入二级索引后,我们从4步降到1步完成结点7的访问;
所以清晰看到,当我们 升级多一层的维度后,链表的访问速度也会相对应的提升。也就是说,在一个非常长的链表中,我们可以 加入N级索引,也就是提高N层的维度就可以提高这个链表访问的速度。总体来说我们就是需要添加 log2n个级索引,来达到最高级索引维度。

跳表查询的时间复杂度分析

  • 首先每一级索引我们提升了2倍的跨度,那就是减少了2倍的步数,所以是n/2、n/4、n/8以此类推
  • 第 k 级索引结点的个数就是 n/(2^k)
  • 假设索引有 h 级, 最高的索引有2个结点;
  • n/(2^h) = 2, 从这个公式我们可以求得 h = log2(n)-1
  • 所以最后得出跳表的时间复杂度是O(log n)

跳表查询的空间复杂度分析

  • 首先原始链表长度为n
  • 如果索引是每2个结点有一个索引结点,每层索引的结点数:n/2, n/4, n/8 ... , 8, 4, 2 以此类推;
  • 或者所以是每3个结点有一个索引结点,每层索引的结点数:n/3, n/9, n/27 ... , 9, 3, 1 以此类推;
  • 所以空间复杂度是O(n)

跳表现实中的形态

a23787e3f128b8041bedf28aa3b31139.png

来源于覃超老师的PPT

  • 在现实使用中,链表的索引并不是那么整齐和有规则的;
  • 这个是因为在元素增加与删除的过程中会有所变化
  • 最后经过多次改动之后,有一些索引会跨步多几步或者少哭跨几步
  • 而且维护成本相对要高 - 新增或者删除时需要把所有索引都更新一遍;
  • 最后在新增和删除的过程中的更新,时间复杂度也是O(log n)
升维思想和空间换时间的思维,我们一定要记下来,并且融会贯通。后面在解决相应的面试题的时候我们会经常用到这种思维。比如:树,二叉搜索树等经常用高级数据库结构。

3f154de81e2cbe07218adf9897cda9a1.png

「四」工程中的应用

链表在日常工程中其实应用是很多的,但是因为这些都属于高级的数据结构了,无论是Java也好、C++、JavaScript还是Go语言,这些语言里面都提供了封装好的数据结构,我们只需要直接使用就可以了

链表的应用

链表最常见的一个应用就是LRU Cache,没有接触过的小伙伴,可以百度一下深挖一下。然后这里附上一道Leetcode的题目[面试题 16.25. LRU缓存,这道题的话使用双链表就可以实现。有兴趣的小伙伴可以尝试实现。

跳表的应用

跳表的话在Redis中就有应用到。 想了解更多的小伙伴可以搜索Redis的跳跃表进深挖。

3f154de81e2cbe07218adf9897cda9a1.png

「终」总结

  • 数据结构
    • 数组:随机查询快 O(1),但是删除与插入较慢 O(n)
    • 链表:删除与插入快 O(1),但是随机查询慢 O(n)
    • 跳表:为了提高链表的随机查询而生的,随机查询能提升到 O(log n),但是维护成本高
  • 思维重点
    • 升维思想 + 空间换时间
  • 应用
    • 链表:LRU Cache
    • 跳表:Redis
我是 三钻,一个在 技术银河中等和你们一起来终身漂泊学习。 点赞是力量,关注是认可,评论是关爱!下期再见 !
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值