Dijkstra算法是解决单源有权图最短路径的一个算法,本质是贪心算法。
总的来说就是维护一个集合collect,保证在集合里的所有结点的最短路径长度都是正确的。
v1为源点,v6为终点,求v1->v6的最短路径。其实求v1->v6的最短路径的同时所有点的最短路径都能求出来。
先将v1加入集合collected,正确,集合中v1->v1的最短路径就是0。
再从与v1相连的结点里选一个权最小的结点加入集合(将v4加入集合),集合里两个结点到源点的最短路径都是对的(v1->v1,v4->v1)。
再从与集合相连接的其它结点选一个dist最小的加入结点,循环上述操作,直到把所有结点都加入集合。
注意:将一个结点v加入集合时,会影响其它未加入集合的结点的dist值,但是只影响与v相连的结点的dist值!
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int N,M,S;//N为图的点数,M为图的边数,S为源点
int GWeight[502][502];//用二维数组储存图的边的权重
int path[505],collected[505] = {0},dist[505];
/**********************************************************************
* path数组用来储存S到结点V的最短路径的V的前一个结点W,即path[V] = W *
* 例:路径S->A->B->W->V是S到V的最短路径,那么path[V] = W *
* collected是bool数组结点是不是在集合里 *
* dist是从S为起始点到结点V的最短路径长度,如上例,dist[V] = 4 *
**********************************************************************/
const int INF = 0x3f3f3f;//假设所有边的权重不超过INF,INF为无限大
void init()//在读入数据之前初始化图
{//GWeight和dist在读取数据之前都初始化为INF,path初始化为-1
for(int i = 0; i < 502; i++){
path[i] = -1;
dist[i] = INF;
for(int j = 0; j < 502; j++){
GWeight[j][i] = INF;
}
}
memset(collected,0,sizeof(collected));//起初,集合里没有任何元素
}
int FindMin()//在不在集合里的结点 且 与集合内结点有边的结点里 找结点的dist的最小值
{
int minV = 0;
int minDist = INF;
for(int i = 0; i < N; i++){
if(!collected[i] && dist[i] < minDist){
minV = i;
minDist = dist[i];
}
}
return minV;
}
void Dijkstra()
{
dist[S] = 0;//源点的距离设为0
collected[S] = true;//将源点放入集合
for(int i = 0; i < N; i++){//更新S周围结点的dist值,与此同时其它结点的dis = INF
dist[i] = GWeight[i][S];
if(dist[i] < INF)
path[i] = S;
else
path[i] = -1;
}
while(1){
int v = FindMin();
if(!v)//集合以外没有结点了
return;
collected[v] = true;//将该节点加入集合
for(int i = 0; i < N; i++){//新结点加入集合会影响其它不在集合里dist的最小值
if(!collected[i]){
if(dist[v] + GWeight[v][i] < dist[i]){
dist[i] = dist[v] + GWeight[i][v];
path[i] = v;
}
}
}
}
}