编程实现dijkstra算法 严蔚敏_Dijkstra算法原理详解与代码实现

Dijkstra算法是解决单源有权图最短路径的一个算法,本质是贪心算法

总的来说就是维护一个集合collect,保证在集合里的所有结点的最短路径长度都是正确的。

1bd7080942cc9b52ae6fce069c440863.png

v1为源点,v6为终点,求v1->v6的最短路径。其实求v1->v6的最短路径的同时所有点的最短路径都能求出来。

先将v1加入集合collected,正确,集合中v1->v1的最短路径就是0。

再从与v1相连的结点里选一个权最小的结点加入集合(将v4加入集合),集合里两个结点到源点的最短路径都是对的(v1->v1,v4->v1)。

再从与集合相连接的其它结点选一个dist最小的加入结点,循环上述操作,直到把所有结点都加入集合。

注意:将一个结点v加入集合时,会影响其它未加入集合的结点的dist值,但是只影响与v相连的结点的dist值!

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;

int N,M,S;//N为图的点数,M为图的边数,S为源点
int GWeight[502][502];//用二维数组储存图的边的权重
int path[505],collected[505] = {0},dist[505];
/**********************************************************************
 * path数组用来储存S到结点V的最短路径的V的前一个结点W,即path[V] = W  *
 * 例:路径S->A->B->W->V是S到V的最短路径,那么path[V] = W             *
 * collected是bool数组结点是不是在集合里                              *
 * dist是从S为起始点到结点V的最短路径长度,如上例,dist[V] = 4        *
 **********************************************************************/
const int INF = 0x3f3f3f;//假设所有边的权重不超过INF,INF为无限大

void init()//在读入数据之前初始化图
{//GWeight和dist在读取数据之前都初始化为INF,path初始化为-1
    for(int i = 0; i < 502; i++){
        path[i] = -1;
        dist[i] = INF;
        for(int j = 0; j < 502; j++){
            GWeight[j][i] = INF;
        }
    }
    memset(collected,0,sizeof(collected));//起初,集合里没有任何元素
}

int FindMin()//在不在集合里的结点 且 与集合内结点有边的结点里 找结点的dist的最小值
{
    int minV = 0;
    int minDist = INF;
    for(int i = 0; i < N; i++){
        if(!collected[i] && dist[i] < minDist){
            minV = i;
            minDist = dist[i];
        }
    }
    return minV;
}

void Dijkstra()
{
    dist[S] = 0;//源点的距离设为0
    collected[S] = true;//将源点放入集合
    for(int i = 0; i < N; i++){//更新S周围结点的dist值,与此同时其它结点的dis = INF
        dist[i] = GWeight[i][S];
        if(dist[i] < INF)
            path[i] = S;
        else
            path[i] = -1;
    }

    while(1){
        int v = FindMin();
        if(!v)//集合以外没有结点了
            return;
        collected[v] = true;//将该节点加入集合
        for(int i = 0; i < N; i++){//新结点加入集合会影响其它不在集合里dist的最小值
            if(!collected[i]){
                if(dist[v] + GWeight[v][i] < dist[i]){
                    dist[i] = dist[v] + GWeight[i][v];
                    path[i] = v;
                }
            }
        }
    }
}
讲解 Dijkstra 算法的基本思想,另外还有算法实现. 当然了,这个算法当路径点上万的时候效率上会降低。 我有另外的改进实现, 上万个点也是在200毫秒内完成。但是不知道怎么添加, 我只能在这里贴关键代码了 : static std::list<Node*> vecNodes; static std::list<Edge*> vecEdges; bool CDijkstras::DijkstrasFindPath(Node* psrcNode, Node* pdstNode, std::list<Node*>& vec, double& fromSrcDist) { if (psrcNode == 0 || pdstNode == 0) return false; if (psrcNode == pdstNode) { vec.push_back(pdstNode); return false; } std::list<Node*>::const_iterator it; for (it=vecNodes.begin(); it!=vecNodes.end(); it++) { (*it)->bAdded = false; (*it)->previous = 0; (*it)->distanceFromStart = MAXDOUBLE; (*it)->smallest = 0; } bool bFindDst = DijkstrasRouteInitialize(psrcNode, pdstNode); fromSrcDist = pdstNode->distanceFromStart; Node* previous = pdstNode; while (previous) { vec.push_back(previous); previous = previous->previous; } m_pDstNode = pdstNode; return bFindDst; } bool CDijkstras::DijkstrasRouteInitialize(Node* psrcNode, Node* pdstNode) { bool bFindDst = false; psrcNode->distanceFromStart = 0; Node* smallest = psrcNode; smallest->bAdded = true; std::list<Node*>::const_iterator it, ait; std::list<Node*> AdjAdjNodes ; for (it=psrcNode->connectNodes.begin(); it!=psrcNode->connectNodes.end(); it++) { if ((*it)->bAdded) continue; (*it)->smallest = psrcNode; (*it)->bAdded = true; AdjAdjNodes.push_back(*it); } while (1) { std::list<Node*> tempAdjAdjNodes; for (it=AdjAdjNodes.begin(); it!=AdjAdjNodes.end(); it++) { Node* curNode = *it; for (ait=curNode->connectNodes.begin(); ait!=curNode->connectNodes.end(); ait++) { Node* pns = *ait; double distance = Distance(pns, curNode) + pns->distanceFromStart; if (distance < curNode->distanceFromStart) { curNode->distanceFromStart = distance; curNode->previous = pns; } if (pns->bAdded == false) { tempAdjAdjNodes.push_back(pns); pns->bAdded = true; } } if (curNode == pdstNode) { bFindDst = true; } } if (bFindDst) break; if (tempAdjAdjNodes.size() == 0) break; AdjAdjNodes.clear(); AdjAdjNodes = tempAdjAdjNodes; } return bFindDst; } // Return distance between two connected nodes float CDijkstras::Distance(Node* node1, Node* node2) { std::list<Edge*>::const_iterator it; for (it=node1->connectEdges.begin(); it!=node1->connectEdges.end(); it++) { if ( (*it)->node1 == node2 || (*it)->node2 == node2 ) return (*it)->distance; } #ifdef _DEBUG __asm {int 3}; #endif return (float)ULONG_MAX; } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ //得到区域的Key// __int64 CDijkstras::GetRegionKey( float x, float z ) { long xRegion = (long)(x / m_regionWidth); long zRegion = (long)(z / m_regionHeight); __int64 key = xRegion; key <<= 32; key |= ( zRegion & 0x00000000FFFFFFFF ); return key; } //得到区域的Key// __int64 CDijkstras::GetRegionKey( long tx, long tz ) { long xRegion = tx ; long zRegion = tz ; __int64 key = xRegion; key <<= 32; key |= ( zRegion & 0x00000000FFFFFFFF ); return key; } //取得一个区域内的所有的路径点, 返回添加的路径点的个数// unsigned long CDijkstras::GetRegionWaypoint (__int64 rkey, std::vector<Node*>& vec) { unsigned long i = 0; SAME_RANGE_NODE rangeNode = mmapWaypoint.equal_range(rkey); for (CRWPIT it=rangeNode.first; it!=rangeNode.second; it++) { i++; Node* pn = it->second; vec.push_back(pn); } return i; } inline bool cmdDistanceNode (Node* pNode1, Node* pNode2) { return pNode1->cmpFromStart < pNode2->cmpFromStart; }; //添加一个路径点// Node* CDijkstras::AddNode (unsigned long id, float x, float y, float z) { Node* pNode = new Node(id, x, y, z); __int64 rkey = GetRegionKey(x, z); mmapWaypoint.insert(make_pair(rkey, pNode)); mapID2Node[id] = pNode; return pNode; } //添加一条边// Edge* CDijkstras::AddEdge (Node* node1, Node* node2, float fCost) { Edge* e = new Edge (node1, node2, fCost); return e; } //通过路径点ID得到路径点的指针// Node* CDijkstras::GetNodeByID (unsigned long nid) { std::map<unsigned long, Node*>::const_iterator it; it = mapID2Node.find(nid); if (it!=mapID2Node.end()) return it->second; return NULL; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值