Machine Learning with Peppa

分享机器学习,数学,统计和编程干货

排序:
默认
按更新时间
按访问量

调度算法的定义与使用价值

互联网应用和现代数据中心 云计算已经火了很多年了,早已开始惠及我们每一个人。今天火热的大数据、机器学习、人工智能、以及你们看到的几乎所有的大规模的互联网应用(淘宝、天猫、优酷等),都是运行在云上的。而支撑云的,是大型云计算服务商部署在世界各地的多个数据中心,每个数据中心都有大量的物理服务器。为了...

2018-09-08 17:15:56

阅读数:14

评论数:0

P2P(Peer to Peer)网络的原理

最近在研究P2P技术,奈何相关资料不多,自己琢磨了一下,分享一下学习P2P的一些原理, 以及如何打造一个P2P聊天应用。 这里指的P2P是指peer to peer, 点对点的技术, 每个客户端都是服务端,没有中心服务器,不是websocket针对某个connection推送消息。 技术要点 ...

2018-09-08 17:14:29

阅读数:92

评论数:0

常用数学符号大学(包含罗马字符)

大写 小写 英文注音 国际音标注音 中文注音 Α α alpha alfa 阿耳法 ...

2018-08-28 11:16:10

阅读数:65

评论数:0

word2vec的应用场景

在社交网络中的推荐 前东家工作的时候,有一个个性化推荐的场景,给当前用户推荐他可能关注的『大V』。对一个新用户,此题基本无解,如果在已知用户关注了几个『大V』之后,相当于知道了当前用户的一些关注偏好,根据此偏好给他推荐和他关注过大V相似的大V,就是一个很不错的推荐策略。所以,如果可以求出来任何两...

2018-08-28 00:13:58

阅读数:29

评论数:0

什么是次梯度(次导数)

1.导数(Derivative)的定义 在说次梯度之前,需要先简单介绍一下导数的概念与定义。导数(英语:Derivative)是微积分学中重要的基础概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。  对于一般的函数f(x)f(x...

2018-08-20 21:08:18

阅读数:192

评论数:0

TensorFlow 最新版安装教程

1.准备好Anaconda环境 tensorflow是属于很高层的应用。高层应用的一个比较大的麻烦就是需要依赖的底层的东西很多,如果底层依赖没有弄好的话,高层应用是没法玩转的。  在极客学院有关tensorflow的教程中,提到了这样几种安装方式:Pip, Docker, Virtualenv,...

2018-08-17 21:10:43

阅读数:45

评论数:0

一个有趣的说法:多层神经网络的致命问题与过拟合

Bengio在Learning Deep Architectures for AI 一书中举了一个有趣的例子。他说:最近有人表示,他们用传统的深度神经网络把训练error降到了0,也没有用你的那个什么破Pre-Training嘛! 然后Bengio自己试了一下,发现确实可以,但是是建立在把接近输...

2018-08-14 19:17:02

阅读数:46

评论数:0

深度学习之稀疏编码算法

如果我们把输出必须和输入相等的限制放松,同时利用线性代数中基的概念,即O = a1*Φ1 + a2*Φ2+….+ an*Φn, Φi是基,ai是系数,我们可以得到这样一个优化问题:Min |I – O| 其中I表示输入,O表示输出。通过求解这个最优化式子,我们可以求得系数ai和基Φi,这些系数和...

2018-08-14 19:05:15

阅读数:31

评论数:0

深度学习中的“卷积”与数学中的“卷积”有何不同

深度学习中的卷积 当提到神经网络中的卷积时,我们通常是指由多个并行卷积组成的运算。(因为单个核只能特区一种类型的特征,我们usually希望可以在多个位置提取多个特征) 输入也不仅仅是实值的网格,而是由一系列观测数据的向量构成的网格。 我们有的时候会希望跳出核中的一些位置来降低计算的开销(相...

2018-08-13 19:40:37

阅读数:73

评论数:0

Scala正则表达式替换

在之前的博文《Scala正则表达式》我简单地介绍了如何在Scala中使用正则表达式来匹配一些我们需要的内容。本篇文章将接着此文继续简单介绍如何使用Scala来匹配出我们需要的字符串,然后使用某种规则来替换匹配出来的字符串。 如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关...

2018-08-12 20:57:02

阅读数:36

评论数:0

Coursera-Deep learning深度学习作业代码

这个月开始刷NG老师的深度学习课程,代码和练习都放在: 我的github 对于作业有问题的同学,欢迎参考,但是希望不要直接复制粘贴

2018-08-11 16:31:41

阅读数:48

评论数:0

对全连接层(fully connected layer)的通俗理解

定义 全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层可由卷积操作实现:对前层...

2018-08-03 11:58:41

阅读数:297

评论数:0

多线程三大概念:并发并行,阻塞,同异步

1. 阻塞,非阻塞   首先,阻塞这个词来自操作系统的线程/进程的状态模型中,如下图: 一个线程/进程经历的5个状态,创建,就绪,运行,阻塞,终止。各个状态的转换条件如上图,其中有个阻塞状态,就是说当线程中调用某个函数,需要IO请求,或者暂时得不到竞争资源的,操作系统会把该线程阻塞起来,...

2018-08-02 19:22:53

阅读数:46

评论数:0

Python机器学习基础教程(一):简介

这周开始做《Python机器学习基础教程》的系列,因为还在刷前几章,所以代码和文章没有码多少,书里的源码和习题可以参见我的github: https://github.com/Y1ran/Introduction-to-Machine-Learning-with-Python-code 关于这...

2018-08-02 19:13:46

阅读数:195

评论数:0

Scala两行代码实现回文数的生成与判断

今天练习Scala发现一个好玩的东西。之前用C自己写过回文数的判断,大概用了20多行。在Scala里可以通过视图高效的截取任意范围内的回文数,只需要1-3行代码即可。 val palindrom = (1 to 100000).view.map( x => x * ...

2018-08-01 23:06:18

阅读数:26

评论数:0

异常检测算法:孤立森林(Isolation Forest)

摘要:iForest用于挖掘异常数据,如网络安全中的攻击检测和流量异常分析,金融机构则用于挖掘出欺诈行为。算法对内存要求很低,且处理速度很快,其时间复杂度也是线性的。可以很好的处理高维数据和大数据,并且也可以作为在线异常检测。 0x14.jpg   01 孤立森林 isolation,...

2018-08-01 13:24:36

阅读数:458

评论数:0

机器学习实战系列(八):分类与回归树

课程的所有数据和代码在我的Github:Machine learning in Action,目前刚开始做,有不对的欢迎指正,也欢迎大家star。除了 版本差异,代码里的部分函数以及代码范式也和原书不一样(因为作者的代码实在让人看的别扭,我改过后看起来舒服多了)。在这个系列之后,我还会写一个sci...

2018-07-26 22:17:40

阅读数:36

评论数:0

深入浅出Flume之原理解析

阅读目录(Content) 一、Flume简介 二、Flume特点 三、Flume的一些核心概念 3.1、Agent结构   3.2、source 3.3、Channel 3.4、Sink 四、Flume拦截器、数据流以及可靠性 4.1、Flume拦截器 4.2、F...

2018-07-25 00:14:39

阅读数:83

评论数:0

Java中synchronized与Lock的区别

引言: 昨天在学习别人分享的面试经验时,看到Lock的使用。想起自己在上次面试也遇到了synchronized与Lock的区别与使用。于是,我整理了两者的区别和使用情况,同时,对synchronized的使用过程一些常见问题的总结,最后是参照源码和说明文档,对Lock的使用写了几个简单的Demo...

2018-07-20 13:07:56

阅读数:33

评论数:0

深入浅出Java反射机制

反射是框架设计的灵魂 (使用的前提条件:必须先得到代表的字节码的Class,Class类用于表示.class文件(字节码))   一、反射的概述 JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获...

2018-07-18 18:29:51

阅读数:33

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭