Machine Learning with Peppa

分享机器学习,数学,统计和编程干货

机器学习之Grid Search网格搜索(自动调参)

什么是Grid Search 网格搜索? Grid Search:一种调参手段;穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果。其原理就像是在数组里找最大值。(为什么叫网格搜索?以有两个参数的模型为例,参数a有3种可能,参数b有4种可能,把所有可能...

2019-01-10 13:26:30

阅读数:1422

评论数:0

2018最新--军事理论课答案(中国国防史)

中国国防史——秦至两晋南北朝已完成 成绩: 100.0分  1  【单选题】中国哪个历史时期的国防是“变法图强,改革军制;奖赏军功,百家论兵”?()  A、元朝时期  B、先秦时期  C、清朝时期  D、明朝时期  我的答案:B 得分: 25.0分  2  【单选题】美国的国防的类型是下面哪一项?...

2018-12-09 13:06:49

阅读数:2913

评论数:1

七种常见的GAN(生成式对抗网络)tensorflow实现

代码在我的GITHUB:https://github.com/Y1ran/GAN-Network-Library-Tensorflow 下载使用前记得star哦~ 除了GAN以外还包括几种变分自编码器的tensorflow实现,版本为Python3 一、GAN 生成式对抗网络(GAN, Ge...

2018-12-01 17:30:16

阅读数:228

评论数:0

深度学习中为什么要使用多于一个epoch?

什么是epoch? 当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一次epoch。然而,当一个epoch对于计算机而言太庞大的时候,就需要把它分成多个小块。 为什么要使用多于一个epoch? 在神经网络中传递完整的数据集一次是不够的,而且我们需要将完整的数据集在同样的神经网络中...

2018-11-25 11:42:55

阅读数:1704

评论数:0

2013-2018卷积神经网络中十个最重要的概念与创新

本文作者Professor ho,原文载于其知乎主页 一、卷积只能在同一组进行吗?– Group convolution  Group convolution 分组卷积,最早在AlexNet中出现,由于当时的硬件资源有限,训练AlexNet时卷积操作不能全部放在同一个GPU处理,因此作者把fea...

2018-11-12 22:41:34

阅读数:227

评论数:0

[R时间序列]ARMA模型如何分辨拖尾与截尾

定义 截尾是指时间序列的自相关函数(ACF)或偏自相关函数(PACF)在某阶后均为0的性质(比如AR的PACF);拖尾是ACF或PACF并不在某阶后均为0的性质(比如AR的ACF)。对于AR和MA模型,其判断方法有所差异: p阶自回归模型 AR(P)  AR(p)模型的偏自相关函数PACF在p...

2018-10-24 18:09:55

阅读数:1934

评论数:0

[NLP自然语言处理]谷歌BERT模型深度解析

BERT模型代码已经发布,可以在我的github: NLP-BERT--Python3.6-pytorch 中下载,请记得start哦 目录 一、前言 二、如何理解BERT模型 三、BERT模型解析       论文的核心:详解BERT模型架构       关键创新:预训练任务 ...

2018-10-15 17:49:18

阅读数:19080

评论数:6

DLL load failed: 找不到指定模块\Failed to load the native TensorFlow runtime解决方法

完整报错信息如下: Traceback (most recent call last): File "C:\Users\toy\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python...

2018-10-13 22:04:48

阅读数:3117

评论数:0

详解tf.nn.bias_add和tf.add、tf.add_n的区别

tf.add(x,y,name=None) x:a tensor musut be one of                           the following types: half, float32, float64, uint8, int8, int16, int32, i...

2018-10-13 15:20:35

阅读数:263

评论数:0

TensorFlow中global_step的直观理解

global_step在滑动平均、优化器、指数衰减学习率等方面都有用到,这个变量的实际意义非常好理解:代表全局步数,比如在多少步该进行什么操作,现在神经网络训练到多少轮等等,类似于一个钟表。 根据代码可以发现global_step的初始化值是0: global_step=tf.Varia...

2018-09-28 16:38:36

阅读数:82

评论数:0

详解tf.Session()和tf.InteractiveSession()的区别

他们之间的区别就是后者加载自身作为默认的Session。tensor.eval()和operation.run()可以直接使用 下面这三个是等价的: sess = tf.InteractiveSession() sess = tf.Session() with sess.as_default...

2018-09-28 16:36:56

阅读数:461

评论数:0

实战Tensorflow之滑动平均模型

本篇文章参考《Tensorflow实战Google深度学习框架》一书 目的 在Tensorflow的教程里面,使用梯度下降算法训练神经网络时,都会提到一个使模型更加健壮的策略,即滑动平均模型。本文基于最近一段时间的学习,记录一下自己的理解。 基本思想 在使用梯度下降算法训练模型时,每次更新...

2018-09-26 21:31:42

阅读数:153

评论数:0

手把手教你在Linux上安装CUDA9.0(以及如何避开所有的坑)

前言:         本篇文章是基于安装CUDA 9.0以及Ubuntu的经验写,CUDA9.0目前支持Ubuntu16.04和Ubuntu17.04两个版本,如下图所示(最下面的安装方式我们选择第一个,即runfile方式):       大家可以先将CUDA文件下载下来,但是最好不要急...

2018-09-24 16:24:06

阅读数:2021

评论数:1

调度算法的定义与使用价值

互联网应用和现代数据中心 云计算已经火了很多年了,早已开始惠及我们每一个人。今天火热的大数据、机器学习、人工智能、以及你们看到的几乎所有的大规模的互联网应用(淘宝、天猫、优酷等),都是运行在云上的。而支撑云的,是大型云计算服务商部署在世界各地的多个数据中心,每个数据中心都有大量的物理服务器。为了...

2018-09-08 17:15:56

阅读数:97

评论数:0

P2P(Peer to Peer)网络的原理

最近在研究P2P技术,奈何相关资料不多,自己琢磨了一下,分享一下学习P2P的一些原理, 以及如何打造一个P2P聊天应用。 这里指的P2P是指peer to peer, 点对点的技术, 每个客户端都是服务端,没有中心服务器,不是websocket针对某个connection推送消息。 技术要点 ...

2018-09-08 17:14:29

阅读数:689

评论数:0

常用数学符号大学(包含罗马字符)

大写 小写 英文注音 国际音标注音 中文注音 Α α alpha alfa 阿耳法 ...

2018-08-28 11:16:10

阅读数:615

评论数:0

word2vec的应用场景

在社交网络中的推荐 前东家工作的时候,有一个个性化推荐的场景,给当前用户推荐他可能关注的『大V』。对一个新用户,此题基本无解,如果在已知用户关注了几个『大V』之后,相当于知道了当前用户的一些关注偏好,根据此偏好给他推荐和他关注过大V相似的大V,就是一个很不错的推荐策略。所以,如果可以求出来任何两...

2018-08-28 00:13:58

阅读数:106

评论数:0

什么是次梯度(次导数)

1.导数(Derivative)的定义 在说次梯度之前,需要先简单介绍一下导数的概念与定义。导数(英语:Derivative)是微积分学中重要的基础概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。  对于一般的函数f(x)f(x...

2018-08-20 21:08:18

阅读数:617

评论数:0

TensorFlow 最新版安装教程

1.准备好Anaconda环境 tensorflow是属于很高层的应用。高层应用的一个比较大的麻烦就是需要依赖的底层的东西很多,如果底层依赖没有弄好的话,高层应用是没法玩转的。  在极客学院有关tensorflow的教程中,提到了这样几种安装方式:Pip, Docker, Virtualenv,...

2018-08-17 21:10:43

阅读数:354

评论数:1

一个有趣的说法:多层神经网络的致命问题与过拟合

Bengio在Learning Deep Architectures for AI 一书中举了一个有趣的例子。他说:最近有人表示,他们用传统的深度神经网络把训练error降到了0,也没有用你的那个什么破Pre-Training嘛! 然后Bengio自己试了一下,发现确实可以,但是是建立在把接近输...

2018-08-14 19:17:02

阅读数:83

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭