计算机求圆面积公式,如何计算圆的面积?

本文介绍了多种计算圆面积的方法,包括不需要π的蒙特卡洛方法、利用微积分的洋葱法和极坐标法,以及转化思想的剪纸法和变形法。通过这些方法,展示了数学的创造力和圆面积公式的多种推导路径。
部署运行你感兴趣的模型镜像

我们很早就学过,圆的面积计算公式:

d68b51ef604f

圆的面积计算公式

但是以前从没想过他是怎么推导来的,今天突发奇想,用微积分推导了一下,然后上网看了下高手们的推导,真的是各种方法无奇不有啊,于是就有了写这篇文章的冲动,总结下各种计算圆面积的方法。

不需要常数π的方法

计算圆的面积中有一个重要常数π,现在假设我们不知道π的值,该怎么计算圆的面积呢?

蒙特卡罗方法(或飞镖法)

不知道常数π的值,也就没法直接求出圆的周长和面积,很好想到的一个方法就是:将圆镶嵌在一个正方形中,然后求出圆占这个正方形面积的百分比:

d68b51ef604f

你可以胡乱朝这个区域投掷飞镖,当飞镖数量足够大,并假设飞镖投到这个区域任意位置的概率是一样的,那么你最后就可以通过飞镖数量求出圆占整个正方形面积的比,设圆的半径为r,正方形面积为:

d68b51ef604f

由知道了比值,自然就可以算出圆的面积

需要常数π的方法

常数π是个重要的常数,它表示圆的周长C和圆的直径d之比:

d70ef7f50df13fd9072c1e6b6f5133a5.png

如果要用公式:

d68b51ef604f

计算圆的面积,当然需要知道π的值。

知道了π的定义,最简单的办法就是滚粗法:

220px-Pi-unrolled-720.gif

操作起来就是:

先用绳子围绕标准圆一周,然后测量绳子长度:

d68b51ef604f

接着找准圆心,然后用尺子测出圆的直径:

d68b51ef604f

这两的比值就是常数π了。当然为了更好的精确度,可以采用多次测量取平均值的方法。

其实上面讲到的蒙特卡洛方法也可以用来计算常数π,只需将圆的半径设为1就好。

还有一种经典的蒙特卡洛方法,叫做蒲风投针实验:

设针的长度是l,平行线之间的距离为t,x为针的中心和最近的平行线的距离,θ为针和线之间的锐角。

d68b51ef604f

可以推导:

1b420d7ae8c0114da491cf09f4d6e447.png的概率密度函数为

83cfa83f553c919a5ed57bc094f78672.png

812f16bcbd152b5aa7fcf0791f3626e1.png

的概率密度函数为:

cebc9fadb9f2d2ad314d50453ec4d4e5.png

x和θ两个随机变数互相独立,因此两者结合的概率密度函数只是两者的积:

8a93f84e658fb8c2dfc36b471ab9363e.png

针和线相交时:

64e94d290e8c8ae091faf0624392bece.png

求上式的积分,得到针和线相交的概率:

2474fe6b9ac4c7c038053047b33a0725.png

即抛n针,其中有h针和线相交的概率为:

ff9ab31a51b6ec5d0b8060c920970051.png

由此可以得到π:

0364a63f9d46f9e9406133c244d9a2c6.png

具体操作时,我们可以取t=2l,然后投掷n针,除以针和线相交的次数h,就得到π:

d68b51ef604f

当然还有更多计算π的方法,像数列求极限等,感兴趣的请参考这里

好了,解决了常数π,下面回到正题,如何计算圆的面积?

剪纸法

剪纸法的思想就是化整为零,再重新拼接。

d68b51ef604f

剪纸法

将一个圆剪成很多小的扇形,然后再将其拼成如上图的一个矩形,由于圆的周长是2πr,蓝色和黄色各占一半,所以拼成的长方形的长约为π*r,而长方形的宽约为圆的半径r,所以圆的面积等于长方形的面积:

d68b51ef604f

变形法

其实这个方法和上个方法基本思想是一样的:圆的面积我们不知道,那能不能把圆转换成我们熟悉的形状呢?比如三角形:

d68b51ef604f

三角形的面积公式我们知道,那与它等价的圆的面积自然也就能计算了:

32b96ab96339b0675b5c2b1fec63ce1f.png

微积分法

大学里学了微积分,用微积分来计算圆的面积,那不是拿着刀俎,鱼肉随便切吗。不过虽然都是用微积分,出发思想不一样,解法也不一样。

洋葱法

使用微积分,我们将圆象洋葱一样分为薄圆环,递增地求出面积。

d68b51ef604f

对“洋葱”,以 t 为半径的无穷薄圆环,贡献的面积是 2πt dt,周长的长度乘以其无穷小宽度。这样对半径为 r 的圆给出了一个初等积分:

975017ef22ee344c12902141406aab8f.png

极坐标法

极坐标也是一种变换的方法,就像傅里叶变换一样,极坐标变换将直角坐标系下看似复杂的东西变成极坐标系下极其简单的东西,就像在直角坐标系下的一个圆环,在极坐标系下却是长方形:

d68b51ef604f

从笛卡尔到极坐标的区域变换

唯一要注意的是,直角坐标系下的面积微元为:dxdy,而极坐标下却是:tdtdθ,不懂可以参考这里

使用极坐标下的二重积分,积分函数为f(x)=1, 积分区域为圆C,则:

0e4d5c316a7d29f9b765314280d433d9.png

分割伞形法

类似于洋葱法,我们也可以把圆分割为一系列小的伞形区域,则每个区域的面积近似为二分之一的弧长(rdθ)乘以半径r:

d68b51ef604f

d68b51ef604f

然后将dθ从0到2π积分,就可以计算出圆的面积:

d68b51ef604f

半圆法

我们知道,圆的方程为:

d68b51ef604f

由此可得,当y>0时,半圆的方程为:

d68b51ef604f

d68b51ef604f

对函数y从-r到r积分,由积分的定义知,积分的结果为二分之一圆的面积。

要计算:

d5c3d38eb2ffb1b2ced61e17a15d0391.png

我们先假设:

a7b7ed14a6ee3c40303af3263f90f88b.png

则:

058b1096bd75d5c1e3a937af7c865684.png

6475ab8d8b914070ce3b9a02ff094947.png

那么:

d5c3d38eb2ffb1b2ced61e17a15d0391.png

8a0854d8fcec51401ef0e0a0b3a8d461.png

b46c1a2769ecf619b6392c12d54a0582.png

3db96712aac8ebdca2bb1e96b615ae5c.png

b0c0ca2ccf133e479786229132893de9.png

3df1f1b7f1ab85c19cde89f3205f3fc2.png

当然,你可以通过mathmatica,直接得到结果:

d68b51ef604f

总结

以上的一些方法,归根结底就两类思想:要么是转化的思想,将圆转化为熟悉的图形计算,要么是微积分的思想,把圆细分为微单元,然后再将这些微单元相加。一个简单的圆面积公式,都有这么多的解法,数学的魅力就在这里。

参考文献

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值