最优停止理论的推导_37%法则没有完美的选择,只有最优的策略

37%法则是一种在有限样本中寻找最优选择的策略。将总时间或尝试次数的37%用于观察,之后选择第一个超过观察期最佳选项的样本。这种策略在买房、找对象等问题上都有应用。例如,找对象时,在26.1岁前观察,之后选择第一个超过之前所有人的人。37%法则源于最优停止理论,如秘书问题中,通过计算得出,采用该策略能以约37%的概率找到最佳人选。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

你可能听过“麦穗理论”

一个智者带着三个人来到一片麦田前,说:你们进麦田里一直往前不要回头,摘下一支最大的麦穗。

第一个人很快就看见一支又大又漂亮的麦穗,于是就很高兴地摘下了这支麦穗。但继续往前走时发现有很多麦穗比他摘的那支要大得多

第二个人吸取了第一个人的教训。每当想摘时,就提醒自己,后面还有更大的。结果他走到了终点,却一支麦穗都没摘

第三个人吸取了前两个人的教训。一开始,他只观察不下手,在心中把麦穗分为”大“、”中“、”小“三类;然后他开始观察验证自己的判断是否正确;在确定自己的判断没有问题后,他摘下了之后遇到的第一支属于”大“类的麦穗。

显然第三个人更聪明,那这个度,如何把握,那就用37%法则:

30023fe803089293162783c1061775f8.png

37%法则是指,在统计学中,对样本数量固定(每个样本只出现一次)的情况下,面对选择其中最优的那个样本这个问题时,如何保证选择的样本尽可能最优的一种策略。就是把样本总量的前37%的样本做为参考,其中的最优的那个作为对照点,如果在剩下63%的样本中,出现比对照点好的样本,就果断选择它。

37% 法则应用

买房子问题:一个月内买到合适的房子,把这个月分成两个阶段。第一阶段:只看不买。第二阶段(第12天开始):一旦遇到一个比第一阶段那个最好的房子好的房子,就毫不犹豫的买下。

找结婚对象问题:一个女孩子,从18岁开始找对象,设定目标是40岁前结婚,根据37%法则,她的两个阶段是26.1岁。26.1岁之前是观察期,她应该只交往不结婚,26.1岁之后是决策期,一旦遇到一个比之前所有遇到的都要好的人,就应该立马把他拿下。

延伸阅读

当事情达成某种平衡时,我们在做决定的时候应该如何去思考?如何找打这个平衡点,能让我们的决定更加明智?

当你遇到一个有感觉的人时,有两个陷阱:

一是像没吃过糖的孩子,哭着喊着要海枯石烂真爱到永远;

二是不甘心,心想后面会不会还有更好的呢?

“科学”的做法是:

  • 年轻时多恋爱,拒绝把遇到的任何人当作人生伴侣,直到你熟悉恋爱市场的行情。

  • 这个阶段一旦过去,选择接下来出现的第一个比之前所遇都要好的人。

这个阶段的数值是多少呢?

“最优停止理论”给出了答案:37%。

你停止找寻并和最佳人选安定下来的概率(用P代表),与潜在恋人(n)中被你拒绝的人数(r)是相关联的,公式如下:

cacb64e2314d2506b0b38e524ba26762.png

比方说吧,如果你一生可能要有10段恋爱,那么找到“那个他”的最大概率发生在拒绝4个恋人之后(代表39.87%的恋爱经历)。

如果你可能谈20段恋爱,则要拒绝前8个人(那个对的人在38.42%处等你)

825d9f26e064890d5ae1ff7bdc50bc89.png

什么是最优停止理论,37%这个数字又是如何推导出来的?这就不得不提最优停止理论的一个经典案例:秘书问题。

我们在公司中工作,被招聘、面试人都有所经历,假如你是一个秘书,需要招聘一个人员,筛选了几分简历,决定面试4人,甲、乙、丙、丁。

每次面试之后,你有两个选择,要么聘用此人,要么拒绝。我们如何才能招聘最佳人选的机会最大,终止面试呢?

我们假设这四个人按照顺序丁>丙>乙>甲,我们面试是随机的,前提也不知道丁是最棒的,如果我们面试完这四个人,是有24种可能的,也就是4种排列。

假如我们有三种策略:

第一种策略:面试完第一人就决定录用,能录用到丁的概率是25%;

第二种策略:面试完最后一人就决定录用(前三人不要),能录用到丁的概率是25%;

第三种策略:面试完第一人不做决定,作为判定标准,一旦出现比他高的人就录用,能录用到丁的概率是46%。假如第一个人是就是丁,后面面试的能力都比他弱,我们就自行放弃吧,选中丁的概率是为0的;假如第一个人是甲,第二个人能力都比甲好,但是录取到丁的概率是2/24;假如第一个人是乙,第二个人是甲的话,肯定不用,第二个人是乙、丙、丁就会录用,但是能录用到丁的概率就是3/24;假如第一个人是丙,只有丁比他强,因此只要丁一出现就会被录取,有6/24的可能性,以上可能性加到一起就是11/24=46%。我们发现第三种策略能选到最优人员的概率要大。

注:以上计算各位可自行搜索,或是自己列一下24个排序,就可以计算出来。

以上是N=4的时候,当N变动时,概率是什么样子的呢?

请看下表:

d43670ac9d22ac5b4b2b48489529c694.png

当N无限大,我们作为标准的策略就是N/e(e是自然常数),概率就是1/e,是不是很神奇。假如人数是10000,,我们采取的策略是10000/2.71828=3678,不做录取,只做标准,选中最优人员的概率为1/e=36.8%≈37%。

这就是37%的由来,因此37%是我们在做最优停止时选择标准根据样本计算的依据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值