实验五
插值法
5.1
实验目的
掌握插值的基本思想与方法,
会借助数学软件
Matlab
求解并讨论其收敛性.
5.2
实验内容
1
、
Lagrange
插值法、
Newton
插值法的
Matlab
求解方法,在对
Runge
现象
的观察基础上,了解高次插值的不稳定性及其改进方法;
2
、熟悉
Matlab
中的插值求解函数,掌握三次样条插值的
Matlab
求解;
3
、会求解某些简单的实际问题.
5.3
实验步骤
5.5.1 Lagrange
插值法和
Newton
插值法
教师示范:
通过计算实例,
学习
Lagrange
插值法和
Newton
插值法的
Matlab
程序编制及其应用.
实例
1.
拉格朗日插值法计算插值
.
已知:
x
:
0
1
2
3
y
:
-5
-6
-1
16
,
求
x
从
0
到
3
间隔
0.1
的函数值
.
实例
2.
拉格朗日插值法求插值多项式
.
程序见
interpEg3.m.
Lagrange
插值
:
自编程序
,interpH
.m
的
M
文件,
yi=interpH(x,y,xi).
Newton
插值
:
自编程序
,
newinter.m
的
M
文件,
yi=newinter(x,y,xi).
5.5.2 Runge
现象
教师示范:
观察
Rung
现象,了解高次插值的不稳定性.程序参见
rungeinterp.m
.
5.5.3
分段低次插值和三次样条插值
学习
Matlab
的插值求解命令。
分段线性插值
:
yi=interp1(x,y,xi,’linear’,’pp’)
三次样条插值
:
yi=interp1(x,y,xi,’spline’,’pp’)
或
yi=spline(x,y,xi)
二维插值
:
interp
2(x,y,z,xi,yi,’spline’)
griddata(x,y,z,xi,yi)
教师示范:
机翼下轮廓线,见
PPT
文件。
学生练习
1
:
对
5.5.2
中的问题分别采用分段线性插值和三次样条插值求解,
了解消除
Rung
现象的基本思路和低次插值的优点.
学生练习
2
:
画手练习
.
在
Matlab
中输入命令:
figure('position',get(0,'screensize'))
axes('position',[0 0 1 1])
[x,y] = ginput;
将你的手放在屏幕上,
沿着手的边界,
用鼠标点击选取一些点,
按回车键结