新冠插值法matlab_matlab 插值法

该实验详细介绍了如何使用Matlab进行插值法,包括Lagrange和Newton插值法,通过具体实例探讨了Runge现象及其不稳定性。同时,讲解了分段低次插值和三次样条插值的Matlab实现,旨在帮助学生掌握插值法及其在解决实际问题中的应用。
摘要由CSDN通过智能技术生成

实验五

插值法

5.1

实验目的

掌握插值的基本思想与方法,

会借助数学软件

Matlab

求解并讨论其收敛性.

5.2

实验内容

1

Lagrange

插值法、

Newton

插值法的

Matlab

求解方法,在对

Runge

现象

的观察基础上,了解高次插值的不稳定性及其改进方法;

2

、熟悉

Matlab

中的插值求解函数,掌握三次样条插值的

Matlab

求解;

3

、会求解某些简单的实际问题.

5.3

实验步骤

5.5.1 Lagrange

插值法和

Newton

插值法

教师示范:

通过计算实例,

学习

Lagrange

插值法和

Newton

插值法的

Matlab

程序编制及其应用.

实例

1.

拉格朗日插值法计算插值

.

已知:

x

0

1

2

3

y

-5

-6

-1

16

x

0

3

间隔

0.1

的函数值

.

实例

2.

拉格朗日插值法求插值多项式

.

程序见

interpEg3.m.

Lagrange

插值

:

自编程序

,interpH

.m

M

文件,

yi=interpH(x,y,xi).

Newton

插值

:

自编程序

,

newinter.m

M

文件,

yi=newinter(x,y,xi).

5.5.2 Runge

现象

教师示范:

观察

Rung

现象,了解高次插值的不稳定性.程序参见

rungeinterp.m

5.5.3

分段低次插值和三次样条插值

学习

Matlab

的插值求解命令。

分段线性插值

:

yi=interp1(x,y,xi,’linear’,’pp’)

三次样条插值

:

yi=interp1(x,y,xi,’spline’,’pp’)

yi=spline(x,y,xi)

二维插值

:

interp

2(x,y,z,xi,yi,’spline’)

griddata(x,y,z,xi,yi)

教师示范:

机翼下轮廓线,见

PPT

文件。

学生练习

1

5.5.2

中的问题分别采用分段线性插值和三次样条插值求解,

了解消除

Rung

现象的基本思路和低次插值的优点.

学生练习

2

画手练习

.

Matlab

中输入命令:

figure('position',get(0,'screensize'))

axes('position',[0 0 1 1])

[x,y] = ginput;

将你的手放在屏幕上,

沿着手的边界,

用鼠标点击选取一些点,

按回车键结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值