来源 | AI小白入门
作者&编辑 | 文杰、yuquanle
原文链接:
【机器学习】三层神经网络mp.weixin.qq.com一、神经单元
深度学习的发展一般分为三个阶段,感知机-->三层神经网络-->深度学习(表示学习)。早先的感知机由于采用线性模型,无法解决异或问题,表示能力受到限制。为此三层神经网络放弃了感知机良好的解释性,而引入非线性激活函数来增加模型的表示能力。三层神经网络与感知机的两点不同
1)非线性激活函数的引入,使得模型能解决非线性问题
2)引入激活函数之后,不再会有
损失的情况,损失函数采用对数损失,这也使得三层神经网络更像是三层多元(神经单元)逻辑回归的复合