多层感知机和神经网络的区别_【机器学习】三层神经网络

本文介绍了多层感知机与神经网络的主要区别,重点在于非线性激活函数的引入,解决了感知机无法解决非线性问题的局限。三层神经网络可以视为多层逻辑回归模型的复合。文章详细阐述了前向传播和反向传播的过程,包括复合函数的计算和链式求导原理,以及在深度学习中如何更新参数。
摘要由CSDN通过智能技术生成

9f76de2e856ca9314f1afb1ec810cf1c.png
来源 | AI小白入门
作者&编辑 | 文杰、yuquanle

原文链接:

【机器学习】三层神经网络​mp.weixin.qq.com
60ac6dfad96fd510e01a0891201ad28b.png

一、神经单元

​ 深度学习的发展一般分为三个阶段,感知机-->三层神经网络-->深度学习(表示学习)。早先的感知机由于采用线性模型,无法解决异或问题,表示能力受到限制。为此三层神经网络放弃了感知机良好的解释性,而引入非线性激活函数来增加模型的表示能力。三层神经网络与感知机的两点不同

1)非线性激活函数的引入,使得模型能解决非线性问题

2)引入激活函数之后,不再会有

损失的情况,损失函数采用对数损失,这也使得三层神经网络更像是三层多元(神经单元)逻辑回归的复合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值