cad转excel插件c2e_别怕!CAD表格与EXCEL之间的转化,有它就够了

excel和CAD表格相关问题,这里分享下,主要存在三种转化:

1、CAD表格(真表格)输出到excel

2、CAD表格(假表格)输出到excel

3、execl表格插入cad中

注:真表格是通过TB快捷键创建的,假表格由线条组成,具体看图:

真表格:

7a1f2f9c14140087d5b6616abceed0b9.png

假表格:

9686b5f3bec4c6b66a05d18ec008cfe3.png

1、CAD表格(真表格)输出到excel;

选中之后鼠标右键,选择输出;

a20dbf3524191b41cb87a634be2be395.png

文件类型选择逗号分隔(*.csv);

c7808aab78eaa912ed6df2ef38e52f7a.png

打开后如图,下面再做局部调整即可。

6884206ce26f5fae94c7b07fcb3f5ccd.png

2、CAD表格(假表格)输出到excel

注:这里需要借助插件或者使用CAD自带的数据提取功能,建议使用插件,自带数据提取比较复杂。

下面以源泉设计插件为例

插件下载地址:http://www.cadzxw.com/32521.html

点击文字工具,文字表格转表格;

3e8553c4a49147254818ab65a60c9b55.png

选择需要转化的对象后按回车;

8c71d27aad3127fd243e14ae6cab4ce5.png

转化后如图;

55320974f571a6476dd4e66fb60c6002.png

假表格变成真表格,其他方法同上。

或者

点击统计工具,统计工具集;

873f85f42f28411426d097e8be9e9ab9.png

选择文字到excel;

b0fa75b6b6315b6f2f267263f2c10bc2.png

选择表格文字后回车;

0bb1c93e7db93a8adbd1b7cebcc21d00.png

即可转化成功并打开;

f2b4e174557a3e46c9e1a15cf8fae150.png

注:如果你同时安装microsoft excel 和 wps excel会提示你,自己选择即可。

3、execl表格插入cad中。

首先创建好excel表格并保存;

72f940c4d7d08e4e2e59d078a610ca09.png

注:我测试了microsoft excel2016,识别不了,安装了microsoft excel2007可以。

输入tb快捷键回车;

19af7eb9cd704eedaf4f5f85a9c656a1.png

选择【自数据链接】,【点击启动数据链接管理器对话框】,【点击创建新的excel数据链接】,命名后点确定;

d9e857f7b22137c167fa83291941a443.png

浏览文件后,选择完整路径,点确定;

b146f19b8eb9a35d94d1746a1313dfa6.png

注:其他选项自行研究。

点确定;

5eab17a81d3e2b479cea30c1391bce4b.png

点确定;

8f2e8a06acef8027fff0e9d521306b01.png

插入;

0ca9100ce721541fc1801927856eca0e.png

如图所示:

da5942d4eb682be9ed876d502e0cb908.png

插入进来的excel默认被锁定,自行解锁即可;

b4b1e2e3b491327a1d5d4ca0101ff429.png

如果excel中内容有改动,改动后保存;

f5b7b93d7eb1385f21463b3da5ebc2b3.png

点击【从源下载】;

b165497956b55827580233d35bda4c1c.png

CAD中自动更新;

44cde82b6598bc53de73eaaea81040fd.png
END
### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值