【人工智能】
前言: 人工智能和氢能都是近年来在不同领域十分火热的技术,目前,相关的研究还较少,有很大的扩展潜力和空间。通过这一跨领域的技术融合,有助于我们进一步了解制氢过程中各种参数之间的关联,进而加深对制氢过程的理解,为制氢过程的进一步优化提供了新的发展思路。6月22日,国家能源局印发《2020年能源工作指导意见》其中提出要制定实施氢能产业发展规划,组织开展关键技术装备攻关,积极推动应用示范。近年来,各地陆续发布各自版本的氢能发展规划,预示着氢能将进入产业化发展的新阶段。但是,氢在自然界中并不作为单独的元素存在,而仅以化合物形式存在。制氢技术便成为氢能大规模应用的基础。制氢的技术路线有很多,往期的交能网文章有过详细的介绍:氢能——点燃未来能源世界
在各种技术路线中,研究人员都需要了解其中涉及的参数以及这些参数之间的相互作用。这就需要用到复杂的数学模型对制氢过程进行精确的模拟。近年来,随着人工智能和机器学习技术的兴起,研究人员开始用新的方法降低系统建模的复杂程度并提高准确性。本文将介绍几种典型的技术及其在制氢领域的应用。其中引用的文献总结在文末,希望深入研究的小伙伴可以收藏本文作为索引。
人工神经网络
人工神经网络(Artificial neural network , ANN)是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算,能在外界信息的基础上改变内部结构,是一种自适应系统。其中,多层感知器(Multilayer Perceptron,MLP)是一种前馈的人工神经网络,映射一组输入向量到一组输出向量。MLP可以被看作是一个有向图,由多个的节点层所组成,每一层都全连接到下一层。除了输入节点,每个节点都是一个带有非线性激活函数的神经元(或称处理单元)。径向基函数网络(Radial basis functionnetwork,RBF network)是一种使用径向基函数作为激活函数的人工神经网络。径向基函数网络的输出是输入的径向基函数和神经元参数的线性组合。相比与MLP,RBF模型的结构更简单,并能提供更有效的学习和建模功能。
2014年,El-Shafie(文献1)在生物发酵制氢的过程中,从间歇式反应器收集了六十个数据集。通过向人工神经网络输入反应温度,初始介质pH和初始底物,得到产氢量。Whiteman等人(文献2)的做了类似的研究,通过输入生物发酵制氢时的糖蜜浓度,pH,温度和接种物浓度对产氢量进行建模。2016年,Karaci等人(文献3)对废料热解制氢的过程进行建模,通过MLP网络,输入催化剂数量,类型,生物量多样性和温度,得到富氢气体产量。Hossain(文献4)通过RBF和MLP研究甲烷重整制氢过程中,甲烷、二氧化碳的转化率及氢气、一氧化碳的产量与进料比,反应温度和金属负载之间的关系。2017年,Jha等人(文献5)在研究厌氧污泥毯(UASB)生物反应器时,通过固定单元容积(ICV),水力停留时间(HRT)和过程温度作为输入变量开发ANN和RSM模型,预测氢气产量和化学需氧量去除效率。
ANFIS和其他模糊方法
自适应神经模糊系统(Adaptive Network-based Fuzzy Inference System, ANFIS)将模糊逻辑和神经元网络有机结合的新型的模糊推理系统结构,采用反向传播算法和最小二乘法的混合算法调整前提参数和结论参数,并能自动产生If-Then规则。模糊推理系统非常适于表示模糊的经验和知识,但缺乏有效的学习机制;神经网络虽然具有自学习功能,却又不能很好的表达人脑的推理功能。通过将两者结合,ANFIS有效的做到了扬长避短。
2016年,Aghbashl等人(文献6)在研究光生物反应器制氢时,先用ANFIS开发了目标函数,然后用非支配排序遗传算法(NSGA),通过输入培养搅拌速度和合成气流速,输出最低分界能和能量转换效率。2017年,Shabanian等人(文献7)对燃料重整过程的非催化过滤燃烧过程中,进气速度和当量比与氢气产率的关系进行了研究。在第一阶段,采用ANFIS方法预测丁醇和喷气燃料的氢产率和转化效率,并从生产产率和能源效率的角度出发,开发了ICA方法以优化上述工艺。
遗传算法及相关算法
遗传算法(Genetic Algorithm, GA)是计算数学中用于解决最优化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等等。对于一个最优化问题,首先组成一组候选解,然后依据某些适应性条件测算这些候选解的适应度,再根据适应度保留某些候选解,放弃其他候选解,最后对保留的候选解进行某些操作,生成新的候选解,从而完成一次迭代。达到一定迭代次数后,算法停止并利用最终模型进行预测。
遗传算法经常与人工神经网络结合使用。例如,2007年,Mu等人(文献8)研究生物制氢的过程中,应用ANN和GA,通过输入OLR, HRT,和IBA,预测氢气的产生速率和产率,沼气中的氢气浓度以及反应器流出物中各组分的浓度。2009年,Wang等人(文献9)针对生物制氢过程,以初始PH,温度和葡萄糖浓度为输入变量,以产氢量为目标值,开发了基于神经网络的GA和RSM。
总结
人工智能和氢能都是近年来在不同领域十分火热的技术,目前,相关的研究还较少,有很大的扩展潜力和空间。通过这一跨领域的技术融合,有助于我们进一步了解制氢过程中各种参数之间的关联,进而加深对制氢过程的理解,为制氢过程的进一步优化提供了新的发展思路。
附录:文献列表
1. El-Shafie A. Neural network nonlinearmodeling for hydrogen production using anaerobic fermentation[J]. NeuralComputing and Applications, 2014, 24(3-4): 539-547.
2. Whiteman J K, Kana E B G. Comparativeassessment of the artificial neural network and response surface modellingefficiencies for biohydrogen production on sugar cane molasses[J]. BioEnergyResearch, 2014, 7(1): 295-305.
3. Karaci A, Caglar A, Aydinli B, et al. Thepyrolysis process verification of hydrogen rich gas (H–rG) production byartificial neural network (ANN)[J]. International journal of hydrogen energy,2016, 41(8): 4570-4578.
4. Hossain M A, Ayodele B V, Cheng C K, et al. Artificialneural network modeling of hydrogen-rich syngas production from methane dryreforming over novel Ni/CaFe2O4 catalysts[J]. International Journal of HydrogenEnergy, 2016, 41(26): 11119-11130.
5. Jha P, Kana E B G, Schmidt S. Can artificialneural network and response surface methodology reliably predict hydrogenproduction and COD removal in an UASB bioreactor?[J]. International Journal ofHydrogen Energy, 2017, 42(30): 18875-18883.
6. Aghbashlo M, Hosseinpour S, Tabatabaei M, etal. On the exergetic optimization of continuous photobiological hydrogenproduction using hybrid ANFIS–NSGA-II (adaptive neuro-fuzzy inferencesystem–non-dominated sorting genetic algorithm-II)[J]. Energy, 2016, 96:507-520.
7. Shabanian S R, Edrisi S, Khoram F V.Prediction and optimization of hydrogen yield and energy conversion efficiencyin a non-catalytic filtration combustion reactor for jet A and butanolfuels[J]. Korean Journal of Chemical Engineering, 2017, 34(8): 2188-2197.
8.Mu Y, Yu H Q. Simulation of biologicalhydrogen production in a UASB reactor using neural network and geneticalgorithm[J]. International journal of hydrogen energy, 2007, 32(15):3308-3314.
9.Wang J, Wan W. Optimization offermentative hydrogen production process using genetic algorithm based onneural network and response surface methodology[J]. International Journal ofHydrogen Energy, 2009, 34(1): 255-261.
其他参考资料:
[1] 维基百科
[2] Faizollahzadeh Ardabili S, Najafi B,Shamshirband S, et al. Computational intelligence approach for modelinghydrogen production: A review[J]. Engineering Applications of ComputationalFluid Mechanics, 2018, 12(1): 438-458.
作者 | 林伟
编辑 | 蒋冉止
栏目负责人 | 邸义博
投稿请联系 | info@jiaonengwang.com
◆ ◆ ◆ ◆ ◆
