本讲主要内容:
Mathematica中的集合的定义及应用
Mathematica中集合的基本运算
Mathematica中集合元素的处理
Mathematica中的集合用列表结构表示。列表是Mathematica产生对象集合的一种方法,它是Mathematica中非常重要而且普遍使用的结构;而且在做计算时,将一些性质相同的Mathematica对象放在一起,作为单个对象来进行处理会使得实验任务的完成更加方便、快捷。
在Mathematica中内置了一些专门的数集定义及相应的名称,比如:
整数集Integers,有理数集Rationals,实数集Reals,复数集Complexes,素数集Primes,布尔数集Booleans,代数数Algebraics等。
2.Mathematica中集合的基本运算(1) 属于关系的判定
主要有Element,MemberQ和SubsetQ。
(2) 集合的运算
主要包括Union(求并集),Intersection(求交集),Complement求补集)、Subsets求子集)和Tuples(求直积,笛卡儿积)等。
3.Mathematica中集合元素的处理(1) 获取集合包含元素的个数: Length
(2) 提取集合中的元素:常用的操作命令有:Last和Part
(3) 删除集合中的元素:常用的操作命令有:Rest,Drop,Most。
(4) 增补元素到集合,常用的操作命令有:Append,AppendTo,Prepend,PrependTo和Insert.
(5) 集合中元素的定位和替换,常用的操作命令为:Position和ReplacePart和元素替换A /. {x -> y}
相关推荐
有关于数学软件、数学实验与数学建模相关的内容可以参见“ 竞赛实验 ”菜单下的“ 数学实验与数学史 ”与“ 数学建模其他竞赛 ”选项浏览. 数学软件应用推荐推文:
你确定你的极限计算的思路、得到的结果是正确的吗?
一道积分算一天,你确信积分对了吗?
空间图形篇:还有你不会绘制的数学函数表达式图形吗?
平面图形篇:还有你不会绘制的数学函数表达式图形吗?
微信公众号:考研竞赛数学(ID: xwmath)大学数学公共基础课程分享交流平台!支持咱号请点赞分享!
↓↓↓点查看更多相关内容