python输出姓名_python摄像头采集图像与库中图像分析,输出人脸姓名或unknown

【实例简介】

摄像头采集图像与库中图像分析,输出人脸姓名或unknown

【实例截图】

8465df8be3c1a5b27c55098533364a81.png

【核心代码】

#摄像头采集图像与库中图像分析,输出人脸姓名或unknown

import face_recognition

import cv2

video_capture = cv2.VideoCapture(0)

# Load a sample picture and learn how to recognize it.

chenglong_image = face_recognition.load_image_file("C:/Users/hp/Pictures/chenglong.jpg")

chenglong_face_encoding = face_recognition.face_encodings(chenglong_image)[0]

# Load a second sample picture and learn how to recognize it.

zaixia_image = face_recognition.load_image_file("C:/Users/hp/Pictures/zaixia.jpg")

zaixia_face_encoding = face_recognition.face_encodings(zaixia_image)[0]

# Create arrays of known face encodings and their names

known_face_encodings = [

chenglong_face_encoding,

zaixia_face_encoding

]

known_face_names = [

"ChengLong",

"mike"

]

# Initialize some variables

face_locations = []

face_encodings = []

face_names = []

process_this_frame = True

while True:

# Grab a single frame of video

ret, frame = video_capture.read()

# Resize frame of video to 1/4 size for faster face recognition processing

small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)

rgb_small_frame = small_frame[:, :, ::-1]

# Only process every other frame of video to save time

if process_this_frame:

# Find all the faces and face encodings in the current frame of video

face_locations = face_recognition.face_locations(rgb_small_frame)

face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)

face_names = []

for face_encoding in face_encodings:

# See if the face is a match for the known face(s)

matches = face_recognition.compare_faces(known_face_encodings, face_encoding)

name = "Unknown"

# If a match was found in known_face_encodings, just use the first one.

if True in matches:

first_match_index = matches.index(True)

name = known_face_names[first_match_index]

face_names.append(name)

process_this_frame = not process_this_frame

# Display the results

for (top, right, bottom, left), name in zip(face_locations, face_names):

# Scale back up face locations since the frame we detected in was scaled to 1/4 size

top *= 4

right *= 4

bottom *= 4

left *= 4

# Draw a box around the face

cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 2)

# Draw a label with a name below the face

cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 255, 0), cv2.FILLED)

font = cv2.FONT_HERSHEY_DUPLEX

cv2.putText(frame, name, (left 6, bottom - 6), font, 1.0, (255, 255,255), 1)

# Display the resulting image

cv2.imshow('video-exist', frame)

# Hit 'q' on the keyboard to quit!

if cv2.waitKey(1) & 0xFF == ord('q'):

break

# Release handle to the webcam

video_capture.release()

cv2.destroyAllWindows()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值