python spark dataframe_pyspark dataframe 常用操作

本文介绍了Spark DataFrame的常用操作,包括数据合并(union、unionAll、unionByName)、样本抽样、条件过滤以及数据注册和写入HIVE。通过示例展示了如何使用filter、sample、registerTempTable及spark.sql进行数据处理,并提供了创建和保存DataFrame的方法,如从RDD、列表、字典或文件中读取数据。
摘要由CSDN通过智能技术生成

spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能。当然主要对类SQL的支持。

在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选、合并,重新入库。

首先加载数据集,然后在提取数据集的前几行过程中,才找到limit的函数。

而合并就用到union函数,重新入库,就是registerTemple注册成表,再进行写入到HIVE中。

1、union、unionAll、unionByName,row 合并(上下拼接)

data_all = data_neg.unionByName(data_pos)

2、dataframe 样本抽样

data_all.sample(False, 0.5, 1000).count()

3、条件过滤

data_all.filter("label >= 1").count()

4、注册为临时表,再使用spark.sql 对dataframe进行操作

res = predictions.select("user_log_acct", split_udf('probability').alias('probability'))

res.registerTempTable("tmp")

spark.sql("insert overwrite table dev.dev_result_temp select user_log_acct,probability from tmp")

spark.stop()

创建和保存spark dataframe:

spark.createDataFrame(data, schema=None, samplingRat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值