python项目解析_5-python数据分析-综合项目分析

第一部分:数据类型处理

数据加载

字段含义:

user_id:用户ID

order_dt:购买日期

order_product:购买产品的数量

order_amount:购买金额

观察数据

查看数据的数据类型

数据中是否存储在缺失值

将order_dt转换成时间类型

查看数据的统计描述

在源数据中添加一列表示月份:astype('datetime64[M]')

加载数据

#加载数据 原数据存在多空格分割,这里使用\s作为分割符

df = pd.read_csv('./CDNOW_master.txt', header=None, sep='\s+', names=['user_id', 'order_dt','order_product','order_amount'])

df.shape

(69659, 4)

查看数据的数据类型

df.info()RangeIndex:69659 entries, 0 to 69658Data columns (total4columns):

user_id69659 non-null int64

order_dt69659 non-null int64

order_product69659 non-null int64

order_amount69659 non-null float64

dtypes: float64(1), int64(3)

memory usage:2.1 MB

数据中是否存储在缺失值

#其实由上边info信息就可以确定没有确实值

df.isnull().any(axis=0)

user_id False

order_dt False

order_product False

order_amount False

dtype: bool

将order_dt转换成时间类型

df['order_dt'] = pd.to_datetime(df['order_dt'], format='%Y%m%d')

查看数据的统计描述

df.describe()

在源数据中添加一列表示月份:astype('datetime64[M]')

df['month'] = df['order_dt'].astype('datetime64[M]')

第二部分:按月数据分析

用户每月花费的总金额

绘制曲线图展示

所有用户每月的产品购买量

所有用户每月的消费总次数

统计每月的消费人数

用户每月花费的总金额

绘制曲线图展示

month_user_amount = df.groupby(by='month')['order_amount'].sum()

month_user_amount.plot()#绘图方式一

plt.plot(month_user_amount)#绘图方式二 俩种都可以

plt.xticks(rotation=30)

所有用户每月的产品购买量

df.groupby(by='month')['order_product'].sum()

month1997-01-01 19416

1997-02-01 24921

1997-03-01 26159

1997-04-01 9729

1997-05-01 7275

1997-06-01 7301

1997-07-01 8131

1997-08-01 5851

1997-09-01 5729

1997-10-01 6203

1997-11-01 7812

1997-12-01 6418

1998-01-01 5278

1998-02-01 5340

1998-03-01 7431

1998-04-01 4697

1998-05-01 4903

1998-06-01 5287Name: order_product, dtype: int64

所有用户每月的消费总次数

df.groupby(by='month')['user_id'].count()

month1997-01-01 8928

1997-02-01 11272

1997-03-01 11598

1997-04-01 3781

1997-05-01 2895

1997-06-01 3054

1997-07-01 2942

1997-08-01 2320

1997-09-01 2296

1997-10-01 2562

1997-11-01 2750

1997-12-01 2504

1998-01-01 2032

1998-02-01 2026

1998-03-01 2793

1998-04-01 1878

1998-05-01 1985

1998-06-01 2043Name: user_id, dtype: int64

统计每月的消费人数

#这里需要对用户去重求和

df.groupby(by='month')['user_id'].nunique()

month1997-01-01 7846

1997-02-01 9633

1997-03-01 9524

1997-04-01 2822

1997-05-01 2214

1997-06-01 2339

1997-07-01 2180

1997-08-01 1772

1997-09-01 1739

1997-10-01 1839

1997-11-01 2028

1997-12-01 1864

1998-01-01 1537

1998-02-01 1551

1998-03-01 2060

1998-04-01 1437

1998-05-01 1488

1998-06-01 1506Name: user_id, dtype: int64

第三部分:用户个体消费数据分析

所有用户消费总金额和消费总购买量的统计描述

各个用户消费金额和消费产品数量的散点图

各个用户消费总金额的直方分布图(消费金额在1000之内的分布)

各个用户消费的总数量的直方分布图(消费商品的数量在100次之内的分布)

所有用户消费总金额和消费总购买量的统计描述

#总金额

df['order_amount'].sum() #2500315.6300000004

#总购买量

df['order_product'].sum() #167881

各个用户消费金额和消费产品数量的散点图

#各个用户消费金额

user_amount = df.groupby('user_id')['order_amount'].sum()#各个用户消费数量

user_product = df.groupby('user_id')['order_product'].sum()

plt.scatter(user_amount,user_product)

各个用户消费总金额的直方分布图(消费金额在1000之内的分布)

user_amount_1000 = df.query('order_amount<=1000').groupby('user_id')['order_amount'].sum()

plt.hist(user_amount_1000,bins=20)

各个用户消费的总数量的直方分布图(消费商品的数量在100次之内的分布)

user_product_100 = df.query('order_product<=100').groupby('user_id')['order_product'].sum()

plt.hist(user_product_100, bins=20)

df有两个常用方法

apply:可以作为df的运算工具,运算df的行或者列

applymap:针对df中每一个元素进行指定形式的运算

第四部分:用户消费行为分析

用户第一次消费的月份分布,和人数统计

绘制线形图

用户最后一次消费的时间分布,和人数统计

绘制线形图

新老客户的占比

消费一次为新用户

消费多次为老用户

分析出每一个用户的第一个消费和最后一次消费的时间

agg(['func1','func2']):对分组后的结果进行指定多种形式的聚合

分析出新老客户的消费比例

用户分层

分析得出每个用户的总购买量和总消费金额and最近一次消费的时间的表格rfm

RFM模型设计

R表示客户最近一次交易时间的间隔。

/np.timedelta64(1,'D'):去除days

F表示客户购买商品的总数量,F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃。

M表示客户交易的金额。M值越大,表示客户价值越高,反之则表示客户价值越低。

将R,F,M作用到rfm表中

根据价值分层,将用户分为:

重要价值客户

重要保持客户

重要挽留客户

重要发展客户

一般价值客户

一般保持客户

一般挽留客户

一般发展客户

使用已有的分层模型即可rfm_func

用户第一次消费的月份分布,和人数统计

绘制线形图

min_month_amount = df.groupby(by='user_id')['month'].min().value_counts()1997-02-01 8476

1997-01-01 7846

1997-03-01 7248Name: month, dtype: int64

min_month_amount.plot()

用户最后一次消费的时间分布,和人数统计

绘制线形图

last_user_amount = df.groupby(by='user_id')['month'].max().value_counts()1997-02-01 4912

1997-03-01 4478

1997-01-01 4192

1998-06-01 1506

1998-05-01 1042

1998-03-01 993

1998-04-01 769

1997-04-01 677

1997-12-01 620

1997-11-01 609

1998-02-01 550

1998-01-01 514

1997-06-01 499

1997-07-01 493

1997-05-01 480

1997-10-01 455

1997-09-01 397

1997-08-01 384Name: month, dtype: int64

last_user_amount.plot()

新老客户的占比

new_old = df.groupby(by='user_id')['order_dt'].agg(['min','max'])

(new_old['min'] == new_old['max']).value_counts()

True12054False11516dtype: int64

新老用户占比:12054:11516近似1:1

用户分层

分析得出每个用户的总购买量和总消费金额and最近一次消费的时间的表格rfm

RFM模型设计

R表示客户最近一次交易时间的间隔。

/np.timedelta64(1,'D'):去除days

F表示客户购买商品的总数量,F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃。

M表示客户交易的金额。M值越大,表示客户价值越高,反之则表示客户价值越低。

将R,F,M作用到rfm表中

根据价值分层,将用户分为:

重要价值客户

重要保持客户

重要挽留客户

重要发展客户

一般价值客户

一般保持客户

一般挽留客户

一般发展客户

使用已有的分层模型即可rfm_func

分析得出每个用户的总购买量和总消费金额and最近一次消费的时间的表格rfm

#根据user_id,取出每个用户的总消费金额,数量,最后一次消费时间透视表

rfm = df.pivot_table(index='user_id', aggfunc={'order_product':'sum','order_amount':'sum','order_dt':'max'})

#消费时间间隔相减后会后带有days,需要除以np.timedelta64(1,'D')去掉days

rfm['R'] = (df['order_dt'].max()-rfm['order_dt'])/np.timedelta64(1,'D')

rfm= rfm[['R','order_amount','order_product']]

rfm.columns= ['R','F','M']

rfm分层算法

defrfm_func(x):#存储存储的是三个字符串形式的0或者1

level = x.map(lambda x :'1' if x >= 0 else '0')#M '0'#F '0'#R '1'

label = level['R'] + level.F +level.M

d={'111':'重要价值客户','011':'重要保持客户','101':'重要挽留客户','001':'重要发展客户','110':'一般价值客户','010':'一般保持客户','100':'一般挽留客户','000':'一般发展客户'}

result=d[label]returnresult#df.apply(func):可以对df中的行或者列进行某种(func)形式的运算

rfm['label'] = rfm.apply(lambda x : x - x.mean(),axis=0).apply(rfm_func,axis=1)

rfm.head()

第五部分:用户的生命周期

将用户划分为活跃用户和其他用户

统计每个用户每个月的消费次数

统计每个用户每个月是否消费,消费记录为1否则记录为0

知识点:DataFrame的apply和applymap的区别

applymap:返回df

将函数做用于DataFrame中的所有元素(elements)

apply:返回Series

apply()将一个函数作用于DataFrame中的每个行或者列

将用户按照每一个月份分成:

unreg:观望用户(前两月没买,第三个月才第一次买,则用户前两个月为观望用户)

unactive:首月购买后,后序月份没有购买则在没有购买的月份中该用户的为非活跃用户

new:当前月就进行首次购买的用户在当前月为新用户

active:连续月份购买的用户在这些月中为活跃用户

return:购买之后间隔n月再次购买的第一个月份为该月份的回头客

统计每个用户每个月的消费次数

#values可以指定除user_id和month的任意一个,用来计数

df_purchase = df.pivot_table(index='user_id',values='order_amount',aggfunc='count',columns='month',fill_value=0)

df_purchase.head()

统计每个用户每个月是否消费,消费记录为1否则记录为0

df_purchase = df_purchase.applymap(lambda x:1 if x>0 else 0)

将用户按照每一个月份分成

#将df_purchase中的原始数据0和1修改为new,unactive......,返回新的df叫做df_purchase_new#固定算法

defactive_status(data):

status= []#某个用户每一个月的活跃度

for i in range(18):#若本月没有消费

if data[i] ==0:if len(status) >0:if status[i-1] == 'unreg':

status.append('unreg')else:

status.append('unactive')else:

status.append('unreg')#若本月消费

else:if len(status) ==0:

status.append('new')else:if status[i-1] == 'unactive':

status.append('return')elif status[i-1] == 'unreg':

status.append('new')else:

status.append('active')returnstatus

pivoted_status= df_purchase.apply(active_status,axis = 1)

pivoted_status.head()

user_id1[new, unactive, unactive, unactive, unactive, ...2[new, unactive, unactive, unactive, unactive, ...3 [new, unactive, return, active, unactive, unac...4[new, unactive, unactive, unactive, unactive, ...5 [new, active, unactive, return, active, active...

dtype: object#将上边得到的1维数据,转化为二维数据制成新的用户活跃表

df_purchase_new = DataFrame(data=pivoted_status.tolist(),index=df_purchase.index,columns=df_purchase.columns)

每月【不同活跃】用户的计数

purchase_status_ct = df_purchase_new.apply(lambda x : pd.value_counts(x)).fillna(0)

转置进行最终结果的查看

df_purchase_new.apply(lambda x:pd.value_counts(x),axis=0).fillna(0)

df_purchase_new.apply(lambda x:pd.value_counts(x),axis=0).fillna(0).T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值