第一部分:数据类型处理
数据加载
字段含义:
user_id:用户ID
order_dt:购买日期
order_product:购买产品的数量
order_amount:购买金额
观察数据
查看数据的数据类型
数据中是否存储在缺失值
将order_dt转换成时间类型
查看数据的统计描述
在源数据中添加一列表示月份:astype('datetime64[M]')
加载数据
#加载数据 原数据存在多空格分割,这里使用\s作为分割符
df = pd.read_csv('./CDNOW_master.txt', header=None, sep='\s+', names=['user_id', 'order_dt','order_product','order_amount'])
df.shape
(69659, 4)
查看数据的数据类型
df.info()RangeIndex:69659 entries, 0 to 69658Data columns (total4columns):
user_id69659 non-null int64
order_dt69659 non-null int64
order_product69659 non-null int64
order_amount69659 non-null float64
dtypes: float64(1), int64(3)
memory usage:2.1 MB
数据中是否存储在缺失值
#其实由上边info信息就可以确定没有确实值
df.isnull().any(axis=0)
user_id False
order_dt False
order_product False
order_amount False
dtype: bool
将order_dt转换成时间类型
df['order_dt'] = pd.to_datetime(df['order_dt'], format='%Y%m%d')
查看数据的统计描述
df.describe()
在源数据中添加一列表示月份:astype('datetime64[M]')
df['month'] = df['order_dt'].astype('datetime64[M]')
第二部分:按月数据分析
用户每月花费的总金额
绘制曲线图展示
所有用户每月的产品购买量
所有用户每月的消费总次数
统计每月的消费人数
用户每月花费的总金额
绘制曲线图展示
month_user_amount = df.groupby(by='month')['order_amount'].sum()
month_user_amount.plot()#绘图方式一
plt.plot(month_user_amount)#绘图方式二 俩种都可以
plt.xticks(rotation=30)
所有用户每月的产品购买量
df.groupby(by='month')['order_product'].sum()
month1997-01-01 19416
1997-02-01 24921
1997-03-01 26159
1997-04-01 9729
1997-05-01 7275
1997-06-01 7301
1997-07-01 8131
1997-08-01 5851
1997-09-01 5729
1997-10-01 6203
1997-11-01 7812
1997-12-01 6418
1998-01-01 5278
1998-02-01 5340
1998-03-01 7431
1998-04-01 4697
1998-05-01 4903
1998-06-01 5287Name: order_product, dtype: int64
所有用户每月的消费总次数
df.groupby(by='month')['user_id'].count()
month1997-01-01 8928
1997-02-01 11272
1997-03-01 11598
1997-04-01 3781
1997-05-01 2895
1997-06-01 3054
1997-07-01 2942
1997-08-01 2320
1997-09-01 2296
1997-10-01 2562
1997-11-01 2750
1997-12-01 2504
1998-01-01 2032
1998-02-01 2026
1998-03-01 2793
1998-04-01 1878
1998-05-01 1985
1998-06-01 2043Name: user_id, dtype: int64
统计每月的消费人数
#这里需要对用户去重求和
df.groupby(by='month')['user_id'].nunique()
month1997-01-01 7846
1997-02-01 9633
1997-03-01 9524
1997-04-01 2822
1997-05-01 2214
1997-06-01 2339
1997-07-01 2180
1997-08-01 1772
1997-09-01 1739
1997-10-01 1839
1997-11-01 2028
1997-12-01 1864
1998-01-01 1537
1998-02-01 1551
1998-03-01 2060
1998-04-01 1437
1998-05-01 1488
1998-06-01 1506Name: user_id, dtype: int64
第三部分:用户个体消费数据分析
所有用户消费总金额和消费总购买量的统计描述
各个用户消费金额和消费产品数量的散点图
各个用户消费总金额的直方分布图(消费金额在1000之内的分布)
各个用户消费的总数量的直方分布图(消费商品的数量在100次之内的分布)
所有用户消费总金额和消费总购买量的统计描述
#总金额
df['order_amount'].sum() #2500315.6300000004
#总购买量
df['order_product'].sum() #167881
各个用户消费金额和消费产品数量的散点图
#各个用户消费金额
user_amount = df.groupby('user_id')['order_amount'].sum()#各个用户消费数量
user_product = df.groupby('user_id')['order_product'].sum()
plt.scatter(user_amount,user_product)
各个用户消费总金额的直方分布图(消费金额在1000之内的分布)
user_amount_1000 = df.query('order_amount<=1000').groupby('user_id')['order_amount'].sum()
plt.hist(user_amount_1000,bins=20)
各个用户消费的总数量的直方分布图(消费商品的数量在100次之内的分布)
user_product_100 = df.query('order_product<=100').groupby('user_id')['order_product'].sum()
plt.hist(user_product_100, bins=20)
df有两个常用方法
apply:可以作为df的运算工具,运算df的行或者列
applymap:针对df中每一个元素进行指定形式的运算
第四部分:用户消费行为分析
用户第一次消费的月份分布,和人数统计
绘制线形图
用户最后一次消费的时间分布,和人数统计
绘制线形图
新老客户的占比
消费一次为新用户
消费多次为老用户
分析出每一个用户的第一个消费和最后一次消费的时间
agg(['func1','func2']):对分组后的结果进行指定多种形式的聚合
分析出新老客户的消费比例
用户分层
分析得出每个用户的总购买量和总消费金额and最近一次消费的时间的表格rfm
RFM模型设计
R表示客户最近一次交易时间的间隔。
/np.timedelta64(1,'D'):去除days
F表示客户购买商品的总数量,F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃。
M表示客户交易的金额。M值越大,表示客户价值越高,反之则表示客户价值越低。
将R,F,M作用到rfm表中
根据价值分层,将用户分为:
重要价值客户
重要保持客户
重要挽留客户
重要发展客户
一般价值客户
一般保持客户
一般挽留客户
一般发展客户
使用已有的分层模型即可rfm_func
用户第一次消费的月份分布,和人数统计
绘制线形图
min_month_amount = df.groupby(by='user_id')['month'].min().value_counts()1997-02-01 8476
1997-01-01 7846
1997-03-01 7248Name: month, dtype: int64
min_month_amount.plot()
用户最后一次消费的时间分布,和人数统计
绘制线形图
last_user_amount = df.groupby(by='user_id')['month'].max().value_counts()1997-02-01 4912
1997-03-01 4478
1997-01-01 4192
1998-06-01 1506
1998-05-01 1042
1998-03-01 993
1998-04-01 769
1997-04-01 677
1997-12-01 620
1997-11-01 609
1998-02-01 550
1998-01-01 514
1997-06-01 499
1997-07-01 493
1997-05-01 480
1997-10-01 455
1997-09-01 397
1997-08-01 384Name: month, dtype: int64
last_user_amount.plot()
新老客户的占比
new_old = df.groupby(by='user_id')['order_dt'].agg(['min','max'])
(new_old['min'] == new_old['max']).value_counts()
True12054False11516dtype: int64
新老用户占比:12054:11516近似1:1
用户分层
分析得出每个用户的总购买量和总消费金额and最近一次消费的时间的表格rfm
RFM模型设计
R表示客户最近一次交易时间的间隔。
/np.timedelta64(1,'D'):去除days
F表示客户购买商品的总数量,F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃。
M表示客户交易的金额。M值越大,表示客户价值越高,反之则表示客户价值越低。
将R,F,M作用到rfm表中
根据价值分层,将用户分为:
重要价值客户
重要保持客户
重要挽留客户
重要发展客户
一般价值客户
一般保持客户
一般挽留客户
一般发展客户
使用已有的分层模型即可rfm_func
分析得出每个用户的总购买量和总消费金额and最近一次消费的时间的表格rfm
#根据user_id,取出每个用户的总消费金额,数量,最后一次消费时间透视表
rfm = df.pivot_table(index='user_id', aggfunc={'order_product':'sum','order_amount':'sum','order_dt':'max'})
#消费时间间隔相减后会后带有days,需要除以np.timedelta64(1,'D')去掉days
rfm['R'] = (df['order_dt'].max()-rfm['order_dt'])/np.timedelta64(1,'D')
rfm= rfm[['R','order_amount','order_product']]
rfm.columns= ['R','F','M']
rfm分层算法
defrfm_func(x):#存储存储的是三个字符串形式的0或者1
level = x.map(lambda x :'1' if x >= 0 else '0')#M '0'#F '0'#R '1'
label = level['R'] + level.F +level.M
d={'111':'重要价值客户','011':'重要保持客户','101':'重要挽留客户','001':'重要发展客户','110':'一般价值客户','010':'一般保持客户','100':'一般挽留客户','000':'一般发展客户'}
result=d[label]returnresult#df.apply(func):可以对df中的行或者列进行某种(func)形式的运算
rfm['label'] = rfm.apply(lambda x : x - x.mean(),axis=0).apply(rfm_func,axis=1)
rfm.head()
第五部分:用户的生命周期
将用户划分为活跃用户和其他用户
统计每个用户每个月的消费次数
统计每个用户每个月是否消费,消费记录为1否则记录为0
知识点:DataFrame的apply和applymap的区别
applymap:返回df
将函数做用于DataFrame中的所有元素(elements)
apply:返回Series
apply()将一个函数作用于DataFrame中的每个行或者列
将用户按照每一个月份分成:
unreg:观望用户(前两月没买,第三个月才第一次买,则用户前两个月为观望用户)
unactive:首月购买后,后序月份没有购买则在没有购买的月份中该用户的为非活跃用户
new:当前月就进行首次购买的用户在当前月为新用户
active:连续月份购买的用户在这些月中为活跃用户
return:购买之后间隔n月再次购买的第一个月份为该月份的回头客
统计每个用户每个月的消费次数
#values可以指定除user_id和month的任意一个,用来计数
df_purchase = df.pivot_table(index='user_id',values='order_amount',aggfunc='count',columns='month',fill_value=0)
df_purchase.head()
统计每个用户每个月是否消费,消费记录为1否则记录为0
df_purchase = df_purchase.applymap(lambda x:1 if x>0 else 0)
将用户按照每一个月份分成
#将df_purchase中的原始数据0和1修改为new,unactive......,返回新的df叫做df_purchase_new#固定算法
defactive_status(data):
status= []#某个用户每一个月的活跃度
for i in range(18):#若本月没有消费
if data[i] ==0:if len(status) >0:if status[i-1] == 'unreg':
status.append('unreg')else:
status.append('unactive')else:
status.append('unreg')#若本月消费
else:if len(status) ==0:
status.append('new')else:if status[i-1] == 'unactive':
status.append('return')elif status[i-1] == 'unreg':
status.append('new')else:
status.append('active')returnstatus
pivoted_status= df_purchase.apply(active_status,axis = 1)
pivoted_status.head()
user_id1[new, unactive, unactive, unactive, unactive, ...2[new, unactive, unactive, unactive, unactive, ...3 [new, unactive, return, active, unactive, unac...4[new, unactive, unactive, unactive, unactive, ...5 [new, active, unactive, return, active, active...
dtype: object#将上边得到的1维数据,转化为二维数据制成新的用户活跃表
df_purchase_new = DataFrame(data=pivoted_status.tolist(),index=df_purchase.index,columns=df_purchase.columns)
每月【不同活跃】用户的计数
purchase_status_ct = df_purchase_new.apply(lambda x : pd.value_counts(x)).fillna(0)
转置进行最终结果的查看
df_purchase_new.apply(lambda x:pd.value_counts(x),axis=0).fillna(0)
df_purchase_new.apply(lambda x:pd.value_counts(x),axis=0).fillna(0).T