python中unique_一个神奇的Python机器学习交互应用开放框架

点击“机器学习算法与Python实战”,“置顶”公众号

重磅干货,第一时间送达2e56813db71e2c0e3ac8969eb2d53bf0.png

向大家推荐一款机器学习用户交互工具开发框架——Streamlit,可以使机器学习工程师能更轻松地创建自定义应用程序已在他们的模型中与数据进行交互。 废话不多说,先来看看它有多神奇~

这是用streamlit开发的Uber数据集交互式仪表板,运行这个Demo前需要先安装streamlit

pip install --upgrade streamlit
streamlit run https://raw.githubusercontent.com/streamlit/demo-uber-nyc-pickups/master/app.py
然后浏览器打开http://localhost:8501,即可实现上面视频中的效果! 再看看一个更牛的应用,通过Udacity自动驾驶车辆照片数据集,进行语义化搜索,可视化人工标注,并且可以实时运行一个YOLO 目标检测器: 整个应用只有300行Python代码,绝大多数是机器学习代码。 实际上其中只有23个Streamlit调用。 具体代码不贴, 大家可以尝试通过github直接运行:
12
$ pip install --upgrade streamlit opencv-python$ streamlit run https://raw.githubusercontent.com/streamlit/demo-self-driving/master/app.py
是不是很酷炫,其实实现起来一点都不复杂,需要什么功能,直接调用API即可,看个Slider、Checkbox、SelectBox实例。
#Slider
streamlit.slider(label, min_value=None, max_value=None, value=None, step=None, format=None)
#Text Input
url = st.text_input('Enter URL')
st.write('The Entered URL is', url)
#Checkbox
df = pd.read_csv("football_data.csv")
if st.checkbox('Show dataframe'):
st.write(df)
#SelectBox
option = st.selectbox(
'Which Club do you like best?',
df['Club'].unique())'You selected: ', option
#MultiSelect
options = st.multiselect(
'What are your favorite clubs?', df['Club'].unique())st.write('You selected:', options)

最终效果

0204bfda4b3f4e3f90d3ccc8d9bd11bc.png

7cd6e77e93e8415b29af5bccccfe15a7.png

手痒吗?赶紧试试吧

更多用法请移步:

https://github.com/streamlit/streamlit

API reference:

https://streamlit.io/docs/api.html

0e93201105c82c596fc73149dce9a9b0.png

觉得不错,还请点个在看,非常感谢~~~

机器学习微信群已开放,请在公众号后台回复「入群

推荐阅读:

陈天奇:机器学习科研的十年 推荐一款功能强大的特征选择工具 CuteCharts一个敲可爱的 Python 手绘风格可视化图表库

ad90453bf9b055d86b888ed2df32c29d.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值