星际开图挂_《星际争霸2》牛x强力高端职业玩家手把手教你识别开图挂

本文作者曾使用开图挂,后放弃并总结了开图挂的使用技巧及特征,包括玩家行为模式、视角操作特点等,帮助玩家识别开图挂行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我不是十分肯定这个帖子对大家有多少的帮助,但我确定肯定会对星际2有好处。

我越来越反感那些开图挂的纱布。曾经我决定加入他们的行列,但没维持几天我就放弃了。开图之后游戏不但变的十分无聊,而且一点也没有胜利的成就感(就如同玩人族一样)。曾经被我用开图挂爆过的炮友们抱歉了。不要打我脸,我已经很无地自容了。

不过在这几天我从我学到的开图挂避免被发现的技巧中对开图挂和开图挂的玩家的作风有了一定的了解,因此我将这些技巧总结分享给大家,希望大家可以从中学到什么。

要注意的是对一个聪明的开图挂使用者来说,识别出来是非常难的,特别是高端玩家里。内战中识别出来的概率要大一些,因为对手总是知道你的科技,并更加针对性和有效率地建造克制你的部队反击你。

以下是我这名虫族玩家的观点:

他知道你在哪里

显而易见的一点,但是需要一点说明。他不会送农民去侦察你(聪明的家伙会)或者直接往你的基地里扔一只农民过去(聪明的家伙不会)。但他总是知道你在哪里,知道你的分矿在哪里,以及你的跳点和野外建筑在哪里。但只是他能看到,他无需战争迷雾就能看到你。不要期待更多。

他知道你的兵力

鉴于虫族的大局操作方式,知道对手的兵力和单位组合很重要。强化农民建设经济还是强化部队扩大虫群…… 一个聪明的虫族开图挂玩家会貌似是IdrA一样,总是知道如何应对你的单位组合并生产出恰当的数量。但普通的玩家不像IdrA那样善于侦查,不会找到你的隐藏科技建筑,也不可能那样迅速地反应。他也知道你的单位要往哪里走。虽然看起来很微妙,但他总是知道你的刺蛇要埋伏在哪里,以及你的医疗船准备偷偷地空降在什么方向。

最重要的是他的视角完全是手动的

一个开图挂使用者会手动地移动镜头并观察你。小地图只有在你开始建造气矿的时候才会知道你在哪,或者你准备放大招或者做跳点的时候。一个熟练的开图挂使用者会手动地移动镜头。比如作为一个虫族,可以送过去一只气球然后框选着自己去看而并非直接点小地图去看。任何种族都可以用农民来完成这个操作,而一个脑残的开图挂者只会直接在小地图上点你的基地然后看你。你只要在录像里看看他这么做的次数和频率就知道了。

他的胜率和积分很高但技术很渣

如同上帝一样的开图挂者的确很难战胜。我是一个400+的钻石,如果我继续开图我可以很容易地胜到1000+。你只要看看他们的大局运作和微操就知道他是不是真的自己打到这个分数的。请记住在星际2里,低APM不代表技术烂。

欢迎添加更多,让我们一起维护我们战网纯洁和公平的环境。

来源:duowan

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 片数量: - 训练集:6,860张片 - 验证集:1,960张片 - 测试集:980张片 总计:9,800张含动态场景的动物像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张片 - 验证集:1,529张片 - 测试集:1,519张片 分类类别: - 家畜类:Cattle()、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标和10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等多角度拍摄数据 二、适用场景 农业智能化管理: 支持发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供多动物识别训练数据 育科研应用: 适用于动物行为学研究和计算机视觉学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角度和场景 大规模训练保障: 超12,000张标注片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值