在小学阶段,自然数主要有两种分类:一类是奇数与偶数,一类是素(质)数与合数。可以用下面的结构图进行简单的概括:
奇数与偶数在自然数中是有规律出现的,而素数与合数就没有排列规律,所以要判断一个非零自然数是否是素数,是一件麻烦的事情,不但要判断能不能被2、3、5整除,甚至还要判断是不是7、11、13等素数的倍数。因此,在小学数学教材中,只要求学生掌握50以内的素数就可以了。
下面重点介绍能被2、3、5整除的数的特征,因为有许多的家长都问到一个相同的问题:能被2和5整除的数只要看该数的个位,而能被3整除的数,为什么要把各个数位上的数字相加起来判断呢?为了清晰理解这个问题,可以从一个实例开始。
例:135能被2、3、5整除吗?
我们立刻就能判断出135不能被2整除,因为当个位上是0、2、4、6、8时,这个数才能被2整除。当个位上是0、5时,这个数能被5整除,所以135能被5整除。而各个数位上的数字和为1+3+5=9,9能被3整除,所以135就能被3整除。这是大家所熟悉的判断方法,那么为什么可以用这种方法来判断2、3、5的倍数特征呢?
根据自然数的位值制记数法,135是由1个百、3个十和5个一组成,其中100和30一定是2的倍数,进一步说,不论几百和几十也一定都是2的倍数,所以不管百位和十位上的数字是几,所组成的几百与几十都是2的倍数。那么,只要判断个位上的数字是不是2的倍数,就可以知道这个数是不是2的倍数。因此,当一个数个位上是0、2、4、6、8时,这个数一定是2的倍数。
同样的道理,不管百位和十位上的数字是几,所组成的几百与几十一定是5的倍数,只要判断个位上的数字是不是5的倍数,就可以知道这个数是不是5的倍数。因此,当一个数个位上是0、5时,这个数一定是5的倍数。