
这里是一则小广告:
关注作者请点击这里哦:zdr0
我的专栏里面不仅有学习笔记,也有一些科普文章,相信我的专栏不会让您失望哦~大家可以关注一下:数学及自然科学
记得点赞加收藏哦~
创作不易,请赞赏一下支持一下作者吧[期待]~
文章中如果有错误的话还请各位大佬多多斧正,感谢!
-尽力写最好的讲义,尽力写最好的科普
推一下我的微信公众号,扫码即可关注哦!今后在知乎所发的文章都会同步到该公众号当中(本文尚未同步,因为快考试了,所以很忙,抽时间会进行同步):


如图片1所示,是一个二端口网络,其中若将端口
其中:
-
:
-
:电源项;
-
:传输矩阵;
-
:输入矢量。
且有:
置
下面我们来逐一介绍这

其中:
置

其中:
置

其中:
置

其中:
置

其中:
置

其中:
置
传输矩阵的转换关系
假设 一个二端口网络具有所有的


其中:
且
一个更加弱的条件是一个二端口网络的
互易定理
设一线性的代数二端网络模型,其支路分别编号为
其中,矩阵
现在我们考察这个扩展网络的两个不同的解
则有解:



在图片2.1—图片2.3中,全部电压源的电压为
![]()
由于图片2.1和图片2.2均满足扩展网络的割集方程和回路方程,因此基于 Tellegen定理有:![]()
![]()
由式:
![]()
则:![]()
现在:令
,则:
![]()
令
,则:
![]()
令
,则:
![]()
![]()
分析一个二端口网络的重要前提:
- 网络中的
元件均为线性,且允许具有线性受控源;
- 不含独立电源;
- 初值为零,即复频域中不含初值电源;
- 约定参考方向(对于端口而言是关联参考方向)。
算例(一)


给定如图片3.1和图片3.2所示的网络,其中包含线性时不变的元件
由于已知传递函数,所以可以确定图片3.1所示的网络中的动态元件的初值均为

其中,Tor(端口)。现在端口加上电源:

则由式
而在图片3.2中,有
算例(二)

如图片3.4所示的二端口网络模型,其中包含线性时不变的元件
首先是暴力列方程法:
联立式
且:
联立式
我们可以先求解该网络的

于是我们可以对图片3.5列写节点电压方程组:
由于
所以图片3.4所示的二端口网络模型的
其中:
可见,由于
对于电源项