标准正态分布怎么算_标准正态分布函数的快速计算方法

本文介绍了在数据分析中如何快速准确地计算标准正态分布函数 $Phi(x)$。通过两种方法,包括 Abramowitz and Stegun 公式 26.2.17 和查表线性插值法,提供了比 R 中 pnorm() 函数更快且精度可控的计算方式。查表法尤其高效,速度提升约15倍,且误差在 $10^{-7}$ 级别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标准正态分布的分布函数 $\Phi(x)$ 可以说是"数据分析师"统计计算中非常重要的一个函数,基本上有正态分布的地方都或多或少会用上它。在一些特定的问题中,我们"数据分析师"需要大量多次地计算这个函数的取值,比如我经常需要算正态分布与另一个随机变量之和的分布,这时候就需要用到数值积分,而被积函数就包含

$\Phi(x)$。如果 $Z\sim N(0,1), X\sim f(x)$,$f$ 是 $X$ 的密度函数,那么 $Z+X$

的分布函数就是

我们"数据分析师"知道,$\Phi(x)$

没有简单的显式表达式,所以它需要用一定的数值方法进行计算。在大部分的科学计算软件中,计算的精度往往是第一位的,因此其算法一般会比较复杂。当这个函数需要被计算成千上万次的时候,速度可能就成为了一个瓶颈。

当然有问题就会有对策,一种常见的做法是略微放弃一些精度,以换取更简单的计算。在大部分实际应用中,一个合理的误差大小,例如

$10^{-7}$,一般就足够了。在这篇文章中,给大家介绍两种简单的方法,它们都比R中自带的 pnorm() 更快,且误差都控制在

$10^{-7}$ 的级别。

第一种办法来自于经典参考书 Abramowitz and Stegun: Handbook of

Mathematical Functions 的 公式

26.2.17 。其基本思想是把 $\Phi(x)$ 表达成正态密度函数 $\phi(x)$

和一个有理函数的乘积。这种办法可以保证误差小于 $7.5\times

10^{-8}$,一段C++实现可以在 这里 找到。(代码中的常数与书中的略有区别,是因为代码是针对误差函数

$\mathrm{erf}(x)$ 编写的,它与 $\Phi(x)$ 相差一些常数)

我们来对比一下这种方法与R中 pnorm() 的速度,并验证其精度。

library(Rcpp)

sourceCpp("test_as26217.cpp") x = seq(-6, 6, by = 1e-6) system.time(y

可以看出,A&S 26.2.17

的速度大约是 pnorm() 的三倍,且误差也在预定的范围里,是对计算效率的一次巨大提升。

那么还有没有可能更快呢?答案是肯定的,而且你其实已经多次使用过这种方法了。怎么,不相信?看看下面这张图,你就明白了。

没错,这种更快的方法其实就是两个字:查表。它的基本想法是,我们预先计算好一系列的函数取值

$(x_i,\Phi(x_i))$,然后当我们需要计算某个点 $x_0$ 时,就找到离它最近的两个点 $x_k$ 和

$x_{k+1}$,再用线性插值的方法得到 $\Phi(x_0)$ 的近似取值:

什么?觉得这个方法太简单了?先别急,这里面还有不少学问。之前我们""说了,我们需要保证这种方法的误差不超过

$\epsilon=10^{-7}$,因此就需要合理地选择预先计算的点。由于

$\Phi(-x)=1-\Phi(x)$,我们暂且只需要考虑 $x$ 为正的情况。如果让 $x_i =

ih,i=0,1,\ldots,N$,那么对函数 $f$

进行线性插值的误差将不超过( 来源 )

其中 $\Vert f’’ \Vert_{\infty}$ 是函数二阶导绝对值的最大值。对于正态分布函数来说,它等于

$\phi(1)\approx 0.242$。于是令 $E(x)=10^{-7}$,我们就可以解出 $h\approx

0.001818$。最后,只要 $x_N>5.199$,即 $N\ge 2860$ 并另所有 $x>x_N$

的取值等于1,就可以保证整个实数域上 $\Phi(x)$ 的近似误差都不超过 $10^{-7}$。

这种简单方法的实现我放在了 Github

上 ,源程序和测试代码也可以在文章最后找到。下面给出它的表现:

library(Rcpp)

sourceCpp("test_fastncdf.cpp") x = seq(-6, 6, by = 1e-6) system.time(fasty

与之前的结果相比,相当于速度是 pnorm() 的15倍!

我们似乎一直以为,在计算机和统计软件普及以后,一些传统的做法就会慢慢被淘汰,例如现在除了考试,或许大部分的时间我们都是在用软件而不是正态概率表。从教学与实际应用的角度来看,这种做法是 应该进行推广和普及的 ,但这也不妨碍我们从一些“旧知识”中汲取营养。关于这种大巧若拙的做法的故事还有很多,比如广为流传的 这一则 。在计算资源匮乏的年代,数据科学家"数据分析师"们想出了各种巧妙的办法来解决他们遇到的各种问题。现如今计算机的性能已经远不是当年可以媲迹,但前人的很多智慧却依然穿透了时间来为现在的我们提供帮助,不得不说这也是一种缘分吧。http://cda.pinggu.org/view/17447.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值