标准正态分布怎么算_标准正态分布函数的快速计算方法

本文介绍了在数据分析中如何快速准确地计算标准正态分布函数 $Phi(x)$。通过两种方法,包括 Abramowitz and Stegun 公式 26.2.17 和查表线性插值法,提供了比 R 中 pnorm() 函数更快且精度可控的计算方式。查表法尤其高效,速度提升约15倍,且误差在 $10^{-7}$ 级别。
摘要由CSDN通过智能技术生成

标准正态分布的分布函数 $\Phi(x)$ 可以说是"数据分析师"统计计算中非常重要的一个函数,基本上有正态分布的地方都或多或少会用上它。在一些特定的问题中,我们"数据分析师"需要大量多次地计算这个函数的取值,比如我经常需要算正态分布与另一个随机变量之和的分布,这时候就需要用到数值积分,而被积函数就包含

$\Phi(x)$。如果 $Z\sim N(0,1), X\sim f(x)$,$f$ 是 $X$ 的密度函数,那么 $Z+X$

的分布函数就是

我们"数据分析师"知道,$\Phi(x)$

没有简单的显式表达式,所以它需要用一定的数值方法进行计算。在大部分的科学计算软件中,计算的精度往往是第一位的,因此其算法一般会比较复杂。当这个函数需要被计算成千上万次的时候,速度可能就成为了一个瓶颈。

当然有问题就会有对策,一种常见的做法是略微放弃一些精度,以换取更简单的计算。在大部分实际应用中,一个合理的误差大小,例如

$10^{-7}$,一般就足够了。在这篇文章中,给大家介绍两种简单的方法,它们都比R中自带的 pnorm() 更快,且误差都控制在

$10^{-7}$ 的级别。

第一种办法来自于经典参考书 Abramowitz and Stegun: Handbook of

Mathematical Functions 的 公式

26.2.17 。其基本思想是把 $\Phi(x)$ 表达成正态密度函数 $\phi(x)$

和一个有理函数的乘积。这种办法可以保证误差小于 $7.5\times

10^{-8}$,一段C++实现可以在 这里 找

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值