轨道世界 RailWorld
开放|共享|价值
地铁智控进化:和利时推出基于工业互联网的新型城轨集成平台
近日,本号在2020北京轨道展会期间就行业关注话题特别专访了北京和利时系统工程有限公司副总裁李剑、智能城轨产品部经理刘小树。
控制类的信号系统领域-和利时推出四网融合的信号系统解决方案。所谓四网就是我们的地铁、市域铁路、城际铁路,还有干线铁路(高铁、普铁),目前这四个轨道交通制式的信号控制是不一样的,和利时提出四网融合的信号理念。我们现在的信号系统设备比较分散,比如地面分成了联锁、ZC等,分散造成了维护点比较多,接口增多,造成故障可能增加,所以和利时提出信号系统集成一体化方案,把地面、车载相关设备分别集成在一个平台上,减少接口,增加可靠性,提高安全性。再一个是基于主动控制的列车控制系统,也就是俗称的基于“车车通信”的信号,通俗来讲将来由车根据前面列车情况来自主判断决策采取最优化的控制,而地面就变成了辅助。在目前提的比较火的“智慧地铁”方面,和利时为此也做了很长期的准备。目前不管地铁也好,其他轨道交通制式也好,所有的系统都是分立的,像信号系统、综合监控系统、PIS等等,要实现他们之间的信息交互,存在很多障碍,数据比较分散。我们现在新集成平台提供一个“容器化”的概念,所有的系统经过虚拟化后,微服务化后集成到我们这个平台里面去。带来的好处是统一的数据存储与管理,为日后智慧地铁的各种运用打下一个基础,这也是符合智慧地铁所提出的基于云-边-端的体系架构。
和利时推出基于工业互联网的新型城轨集成平台,塑造以城轨信息模型为核心的平台能力,实现基于统一数据共享的业务流程,进而实现联合竞争和共同发展,提高城轨核心竞争力,高效实现城轨智慧应用。和利时综合智能运维解决方案,涵盖智慧车站管理系统、智慧运维监测系统、智慧调度决策系统等,可实现智能互联、智能可视化、智能检修和智能计划,打造轨道交通智慧运维新前景。
《轨道世界》:在5G、人工智能、物联网、云计算、大数据等技术发展的驱动下,轨道交通智能控制行业将面临怎样的挑战? 北京和利时系统工程有限公司副总裁李剑: 挑战来自几个方面,轨道交通是一个传统行业,但是又承担着旅客运输这样一个很重要的安全任务和职责,所以在某种程度上对新技术应用有一定的顾虑,但对于5G、大数据等新一代技术给轨道交通带来管理理念上的冲击,对于管理对于运营会带来一种观念上的变革。 第二方面,这些新技术的运用如何发挥它的功能或达到预期目标,这也是一种挑战。现在新技术投资都比较大,上云也好,上新算法也好,上工业互联网新集成平台也好,如何最大程度上发掘这些新技术的价值来匹配我们运营维护的需求。 第三方面,各厂家都在推出 “智慧地铁”概念的产品或解决方案,但是没有一个统一的标准,无法清晰定义,具体如何操作,各个厂家、地铁运营、建设单位也都处于摸索阶段,我们也要携手同行、业主、专家们共同研发出适用于轨道交通领域的产品、技术、解决方案,更好地服务用户。 近年来,和利时始终致力于轨道交通运行控制技术的创新研究,结合新技术、新需求,加大基础研发,突破支撑关键技术,在“智能控制、智慧管理、自主可控、安全可信”战略指导方针下构建轨道交通新业态,并取得了一定的科技成果。 例如,和利时融合物联网、云计算、大数据等新一代信息技术,推出基于城轨云平台的综合监控系统,并成功应用于呼和浩特地铁1、2号线及深圳地铁6号线。基于城轨云平台的综合监控系统具有车站、线网两级硬件部署,可对客流量、环境、能耗、设备稳定运行等进行智能分析,实现对供电、环控等二十余项专业子系统的智能化集成监控,以保障系统间的快速联动和应急处置。与传统综合监控系统相比,现有系统可靠性、可维护性、可扩展性大幅提高,为地铁的安全、稳定运行提供了更为牢固的保障。 同时,和利时以云、人工智能、大数据等智能技术为手段,研发了综合智能运维解决方案,可实现智能互联、智能可视化、智能检修和智能计划,打造轨道交通智慧运维新前景。该方案是一体化管理平台,使用一套系统实现对运维管理多维度的高效统一管理;通过自动、实时、全面透彻的感知,强调物与物、人与物、人与人的全面互联、互通、互动,处置由事后向事前预警预测转移,实现预测维修管理模式落地,目前正在深圳等地铁线路及预研项目上推广应用。在中国目前建设线路里,已经有百分之五十基本上都会上城轨云,推进力度非常大,协会做出了很大贡献。和利时推出新的城轨集成平台,主要是考虑到随着智慧城轨的发展所提出了新的需求,智慧城轨理念也是最近一两年才提出来的,基于当前云的架构要做快速的智慧城轨新的应用存在一些瓶颈。
北京和利时系统工程有限公司智能城轨产品部经理刘小树: 车站级智能控制的功能承载的底座典型的应用场景,比如车站里的环控,节能,要采集非常多的数据,对变量通过复杂算法在车站产线级做计算,再如现在做设备诊断,电扶梯等一些车站设备,需要做现场采集,和协议的转化,还需要做复杂的计算,计算完成后再把结果输出到现场控制器去,同时把一些初步诊断数据发送到云端去,整个线路或线网的统计学习完了以后的模型下载下来,再在边缘控制器上做实施。
·谢谢你的深入阅读,转发分享点在看是最大的鼓励·
新媒体合作/品牌宣传请联系微信号:zionland