多元函数概念思维导图_思维导图全解二次根式、平面直角坐标系及函数的性质概念...

二次根式、平面直角坐标系及函数,在初中数学中,占有一定的考试比例。通过思维导图总结的内容,不过是一两张纸而已,但是真正要学会弄懂,需要不断地进行运算、练习。

学习二次根式要明确二次根式的定义,以及有意义的条件,区分同类二次根式,并且能够运用二次根式进行加减乘除运算。

学习平面直角坐标系,要区分坐标轴上的坐标点,以及各象限,角平分线所处的位置,学会向上、向下、向左、向右平移坐标轴上的点。通过运算求出,点到坐标轴的距离。概念要清晰,公式要铭记。

学习函数及其图像,要知道函数的基本表达式,自变量的取值范围,几何图形中动点的问题,用函数图像来解决实际问题。思维导图基本内容如下:

0e174fb55e0d60052b62a35db3499b50.png

1、矩形,性质、判断、面积公式

2、菱形,性质、判断、面积公式

3、正方形,性质、判断、面积公式

4、四边形之间的转换关系。

9384b5385290eda99d29b53887a8e388.png

二次根式会经常作为考试的重点,需要掌握二次根式的概念,性质以及运算。

二次根式的性质,在思维导图中分为4种,请务必记住学会。

二次根式的运算,包括加法运算,乘法运算,除法运算。

二次根式的估值,方法为,1、先对根式平方,2, 找出平方后所得数字相邻的两个开得尽方的整数。3、对以上两个整数开方。4、确定这个根式的值在这两个整数之间。

afbc39177adf6d33a46067cd93b71ff3.png

平面直角坐标系,1、用图示法确定坐标系中各个项的坐标,2、观察坐标轴上点的坐标特征,3、坐标系中各象限角平分线上点的坐标特征,4、坐标系中对称点的坐标特征。5、学会坐标系中点坐标的平移,6、点到坐标轴的距离。

函数,1、函数及其图像的表示方法,2、函数表达式的形式及函数自变量的取值范围,3、函数图像的判断与分析。

结束语:好了,今天小编的文章就到此结束了,感谢各位朋友的阅读。每一篇文章,都是小编用心写的,收集了许多的资料,实属不易!如果各位阅读的朋友觉得小编今天写的文章不错,那么就麻烦各位朋友高抬金手,在文章末尾为小编点一个小小的赞,各位朋友的赞,将会让小编高兴一整天,也会成为小编继续努力的动力!同时如果各位朋友喜欢小编写的文章,可以给小编点点关注,好让小编拥有这份荣幸,继续为各位朋友创作优质的文章!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值