二次根式、平面直角坐标系及函数,在初中数学中,占有一定的考试比例。通过思维导图总结的内容,不过是一两张纸而已,但是真正要学会弄懂,需要不断地进行运算、练习。
学习二次根式要明确二次根式的定义,以及有意义的条件,区分同类二次根式,并且能够运用二次根式进行加减乘除运算。
学习平面直角坐标系,要区分坐标轴上的坐标点,以及各象限,角平分线所处的位置,学会向上、向下、向左、向右平移坐标轴上的点。通过运算求出,点到坐标轴的距离。概念要清晰,公式要铭记。
学习函数及其图像,要知道函数的基本表达式,自变量的取值范围,几何图形中动点的问题,用函数图像来解决实际问题。思维导图基本内容如下:
1、矩形,性质、判断、面积公式
2、菱形,性质、判断、面积公式
3、正方形,性质、判断、面积公式
4、四边形之间的转换关系。
二次根式会经常作为考试的重点,需要掌握二次根式的概念,性质以及运算。
二次根式的性质,在思维导图中分为4种,请务必记住学会。
二次根式的运算,包括加法运算,乘法运算,除法运算。
二次根式的估值,方法为,1、先对根式平方,2, 找出平方后所得数字相邻的两个开得尽方的整数。3、对以上两个整数开方。4、确定这个根式的值在这两个整数之间。
平面直角坐标系,1、用图示法确定坐标系中各个项的坐标,2、观察坐标轴上点的坐标特征,3、坐标系中各象限角平分线上点的坐标特征,4、坐标系中对称点的坐标特征。5、学会坐标系中点坐标的平移,6、点到坐标轴的距离。
函数,1、函数及其图像的表示方法,2、函数表达式的形式及函数自变量的取值范围,3、函数图像的判断与分析。
结束语:好了,今天小编的文章就到此结束了,感谢各位朋友的阅读。每一篇文章,都是小编用心写的,收集了许多的资料,实属不易!如果各位阅读的朋友觉得小编今天写的文章不错,那么就麻烦各位朋友高抬金手,在文章末尾为小编点一个小小的赞,各位朋友的赞,将会让小编高兴一整天,也会成为小编继续努力的动力!同时如果各位朋友喜欢小编写的文章,可以给小编点点关注,好让小编拥有这份荣幸,继续为各位朋友创作优质的文章!