python神经网络模型调用后预测值不变_Keras构建神经网络踩坑(解决model.predict预测值全为0.0的问题)...

本文讲述了作者在使用Keras构建神经网络时遇到的预测值全为0.0的问题,原因是数据预处理中标准化误用为归一化。通过改正数据预处理方法,将标准化改为归一化,问题得到解决。此外,还提到了在模型预测阶段,如果训练时使用了ImageDataGenerator,预测时也需要保持一致的数据处理方式,否则可能导致预测结果不准确。
摘要由CSDN通过智能技术生成

终于构建出了第一个神经网络,Keras真的很方便。

之前不知道Keras这么方便,在构建神经网络的过程中绕了很多弯路,最开始学的TensorFlow,后来才知道Keras。

TensorFlow和Keras的关系,就像c语言和python的关系,所以Keras是真的好用。

搞不清楚数据的标准化和归一化的关系,想对原始数据做归一化,却误把数据做了标准化,导致用model.predict预测出来的值全是0.0,在网上搜了好久但是没搜到答案,后来自己又把程序读了一遍,突然灵光一现好像是数据归一化出了问题,于是把数据预处理部分的标准化改成了归一化,修改过来之后才能正常预测出来值,才得到应有的数据趋势。

标准化:

(x-mean(x))/std(x) 这是使用z-score方法规范化

归一化:

(x-min(x))/(max(x)-min(x)) 这是常用的最小最大规范化方法

补充知识:keras加载已经训练好的模型文件,进行预测时却发现预测结果几乎为同一类(本人预测时几乎均为为第0类)**

原因:在进行keras训练时候,使用了keras内置的数据读取方式,但是在进行预测时候,使用了自定义的数据读取方式,本人为图片读取。

解决办法查看如下代码:

##############训练:

train_gen = ImageDataGenerator(rotation_range=10,

width_shift_range=0.2,

shear_range=0.2,

### 回答1: 当我们使用Keras构建神经网络时,如果我们将神经网络用于一个包含581个类别的分类问题,并且在使用 model.predict函数进行预测时,得到的预测值全为0.001,可能存在以下几个原因: 1. 数据集质量问题:首先,我们需要确保我们的数据集正确且质量良好。如果数据集中的样本数量不平衡,即不同类别的样本数量差异较大,那么训练出的模型可能会倾向于预测样本数量多的类别。这可能导致其他类别的预测值很低。 2. 网络结构问题:其次,我们需要检查我们所构建神经网络的结构是否合适。如果网络结构过于简单,可能无法在如此复杂的分类任务中学习到足够的特征表示。建议尝试增加网络的深度或者宽度,以增加模型的表示能力。 3. 训练不充分:此外,我们需要确保我们的模型已经充分地进行了训练。如果模型的训练次数不足够,或者训练集和验证集的划分不合理,模型可能没有充分地学习到数据集中的模式和特征。建议增加训练的迭代次数,并合理划分训练集和验证集。 4. 正则化参数问题:最后,我们需要检查模型中的正则化参数是否合理。如果正则化参数设置过大,模型可能会过度约束,导致预测值都很接近0.001。建议适当调整正则化参数的数值,以平衡模型的拟合能力和泛化能力。 需要根据具体情况来综合考虑这些可能的原因,并尝试不同的调整方法来改善模型的预测效果。 ### 回答2: 如果使用Keras构建神经网络进行581类的预测任务,且在进行预测时得到的预测值全都是0.001,可能存在以下几种原因: 1. 数据集问题:可能训练集和测试集中的样本分布不均衡,导致模型无法学习到正确的特征和模式。建议对数据进行详细的分析,确保样本分布均匀,并进行合适的数据增强、平衡等预处理操作。 2. 模型设计问题:可能使用的模型结构不适合该任务,或者模型中的参数选择不当。可以考虑重新设计模型结构,调整参数设置等。 3. 过拟合问题:可能模型过于复杂,导致在训练集上得到较好的效果,但在测试集上表现不佳。可以通过增加正则化等手段来减轻过拟合问题。 4. 学习率问题:可能学习率设置过大或过小,导致模型无法有效地学习特征。可以尝试不同的学习率调整策略,如学习率衰减等。 5. 数据预处理问题:可能对输入数据进行的预处理不正确,导致模型无法准确地提取特征。建议重新检查数据预处理的步骤,确保符合任务要求。 综上所述,如果在用Keras构建神经网络进行581类预测时得到的预测值全为0.001,可以从数据集、模型设计、过拟合、学习率和数据预处理等多个方面进行排查和调整,以提升模型的预测性能。 ### 回答3: 如果使用Keras构建神经网络进行581类的分类任务,并且在使用model.predict方法进行预测后,预测值全为0.001,可能有以下几个原因: 1. 数据集问题:可能存在数据集中的标签标注错误或者标注不准确,导致模型学习不到有效的特征信息。建议检查数据集中的标签是否正确,并进行必要的更正或调整。 2. 模型架构问题神经网络的层数和节点数可能不足以提取有效的特征。可以尝试增加神经网络的深度和宽度,增加隐藏层的数量或增加每个隐藏层的节点数,以增强模型的拟合能力。 3. 训练过程问题:可能存在训练集和验证集分割不合理,导致模型无法从训练数据中学习到有效的模式。建议重新检查训练集和验证集的分割方式,并进行必要的调整。 4. 参数初始化问题模型的参数初始化可能不够合理,导致模型难以学习到有效的特征。可以尝试使用更合适的参数初始化方法,如Xavier或He初始化,并检查是否存在梯度消失或梯度爆炸的问题。 5. 学习率问题模型的学习率可能设置过大或过小,导致模型在训练过程中无法有效地收敛。可以尝试调整学习率的大小,并观察模型的训练曲线,以确定合适的学习率。 综上所述,如果使用Keras构建神经网络在581类分类任务中,预测值全为0.001,可以从数据集问题模型架构问题、训练过程问题、参数初始化问题和学习率问题等方面进行排查和调整,以提升模型的预测性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值