lm曲线公式推导_解题方略!圆锥曲线焦半径三部曲——定比模型

本文介绍了圆锥曲线焦半径的定比模型,详细讲解了焦半径的坐标式和角度式,并通过椭圆的例子证明了公式的一致性,适用于椭圆、双曲线和抛物线。同时探讨了抛物线中离心率与∠PFO的关系,指出无论焦点在x轴还是y轴,公式均适用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,今天讲焦半径的定比模型

圆锥曲线焦半径三部曲——坐标式

圆锥曲线焦半径三部曲——角度式

6d08493de9c41e7035126e4ae62232ad.png

以椭圆为例证明,由焦半径公式可得

980747298779037b4932ae6e31219d0e.png

上述公式具体有统一性。椭圆、双曲线和抛物线均适合,抛物线的离心率,若定义∠PFO=θ,焦点在x轴y轴公式均适合。

6b1040f6c6a5f9284081b8d245181602.png

a70902c601328b74e89fd1e1cd5f721e.png

dadbdafc922a58efb7ffabbd07bb66f2.png

23e61cbb572701882ad4d6210b50abd1.png

a9f5330b58305be9cb1d5f144a2c2755.png

3a9d5492998a75f537e7fabc867b9e79.png

50fa72fac9df55e1c27fb884abde207a.png

14812490d1316ad1807b2b79a1ff61b6.png

31954c5693eb07f01a27b091a64e833b.png

03fe70113df6c12b71619ff81f92830d.png

72fda095210c9c5fefde79ace63dca29.png

34adaae3f859f9ead7371022f55dea23.png

dddeb0a9da83ec32fd6bfa29cfb9340c.png

c669edb51e889863e718a10bbfa26d15.png

6d29dcd06fae4f434f1bc6e157b3d6ce.png

989d6609b8d083ea934c3d8f7fe872fa.png

83dcdde1ead8b5d429de512ba43e8531.png

cb21a5046934dbf25f9c1506a7c80921.png

焦半径三部曲(坐标式 、角度式 和定比模型 )今天就全部完成了。 基本上所有焦半径的题型都可以用这三个切入点做出来,遇到坐标用坐标式,遇到直线用斜率式,遇到比值用定比模型。 关于这些焦半径二级结论我还有话要说。 二级结论是指在平时的教学中,由教材中原有的公式、概念和定义进行归纳推导得出的 在一定条件下成立的结论 。 确实记住了这些二级结论针对一些特有的题型能不假思索,快速做出答案。 但是 高考命题的专家不是白吃干饭的, 为体现高考的公平,命题组肯定会绞尽脑汁考察三基。若过度依赖二级结论,思维容易僵化,遇到一些似是而非的题目时往往乱套结论,同时二级结论往往都有一定的条件限制,用的越爽限制条件往往越大。 所以,任何二级结论要先熟练掌握它的推导过程,而不是只停留在像背诵英文单词一样把它背下来。 表象都是结论,背后全是推导。 ~end~ 相关阅读: 圆锥曲线焦半径三部曲——坐标式 圆锥曲线焦半径三部曲——角度式 QQ群:659290115 看更多数学学习文章 请长按下方图片扫码关注

数 学 研 讨

55e8761e6925fa519be5199705203800.gif

066e89e9d91d3c68dfc841df3971cec2.png

6514ec036afb845f08ce6b59d6d707c2.gif加入高中数学教研群

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值