图
3 ((7+3)
∗
(5−2))
的简化分析树
本章其余部分我们研究分析树的更多细节,特别是要研究:
对完全括号表达式怎样构建分析树。
怎样对分析树的表达式求值
怎样从分析树还原数学表达式。
构建分析树,第一步是把表达式分解成符号保存在列表里。这里面有
4
种符号:左括号,右括号,操作符,操作数。我们知道每当读到一个左括号,就是新开一个表达式,这时就要新建一个子树来对应括号内的表达式。相反地,每读到一个右括号,这个子表达式就结束了。另外我们也要知道,操作数总是操作符的叶子。最后我们要知道,每个操作符都有左右两个孩子。
知道了以上信息,我们可以给出以下规则:
1.
如果当前符号是
’(‘
,新增一个节点作为当前节点的左孩子,并下沉到这个左孩子。
2.
如果当前符号在
['+','-','/','*']
,
把当前节点的值赋为当前符号,并且为当前节点增加一个右孩子,并下沉到这个右孩子。
3.
如果当前符号是一个数字,把当前节点值设为这个数,返回到父母节点。
4.
如果当前符号是‘)’
,
返回到父母节点。
开始写代码之前,我们先看一看上面的规则是怎样运作的。以表达式
(3+(4
∗
5))
为例,我们把它分析成字符列表
['(', '3', '+',
'(', '4', '*', '5',')',')']
.
,我们从一个只含有空根节点的分析树开始,如图
4
所示为结构,和每一次操作后的内容。
新建空节点
读到左括号,规则
1
读到
3
,规则
3
读到
+
,规则
2
读到左括号,规则
1
读到数字
4
,规则
3
读到
*
,规则
2
读到数字
5
,规则
3
图
4
跟踪分析树构建
按图
4
,步骤是这样的的:
建一个空树
读入第一个符号(,按规则1,新建一个节点作为根的左孩子。把左孩子作为当前节点。
读入第二个符号3,按规则3,将节点值设为3,并返回到它的父母。
读入第三个符号+,按规则2,将节点值设为+并增加右孩子,并作为当前节点
读入第四个符号(,按规则1,新建一个节点,作为当前节点的左孩子,并设为当前节点
读入第五个符号4,按规则3,节点值设为4,将它的父母作为当前节点。
读入下一个符号*,按规则2,当前节点值设为*并新建一个右节点。新节点设为当前节点。
读入下一个符号5,按规则3,当前节点值设为5,它的父母作为当前节点。
读入下一个符号),按规则4,*的父母成为当前节点
读入下一个符号),按规则4,+的父母作为当前节点。+没有父母,操作结束。
从上面的例子很清楚地看到,我们必须保持对“当前节点”和它的“父母节点”的跟踪。树的接口已经提供了获得孩子节点的方法,
getLeftChild
和
getRightChild
但是怎样跟踪父母呢?一个简单方法就是使用栈,每当下沉到当前节点的孩子时,先把当前节点压栈,当要返回到当前节点的父母时,从栈中弹出。
使用以上规则,加上
Stack
和
BinaryTree
的操作,现在我们可以写分析树的代码了。如下:
from pythonds.basic.stack import Stack
from pythonds.trees.binaryTree import BinaryTree
def buildParseTree(fpexp):
fplist = fpexp.split()
pStack = Stack()
eTree = BinaryTree('')
pStack.push(eTree)
currentTree = eTree
for i in fplist:
if i == '(':
currentTree.insertLeft('')
pStack.push(currentTree)
currentTree = currentTree.getLeftChild()
elif i not in ['+', '-', '*', '/', ')']:
currentTree.setRootVal(int(i))
parent = pStack.pop()
currentTree = parent
elif i in ['+', '-', '*', '/']:
currentTree.setRootVal(i)
currentTree.insertRight('')
pStack.push(currentTree)
currentTree = currentTree.getRightChild()
elif i == ')':
currentTree = pStack.pop()
else:
raise ValueError
return eTree
pt = buildParseTree("( ( 10 + 5 ) * 3 )")
pt.postorder() #下节讲到
上面代码中,我们讲过的四规则,分别体现在
if
语句的四个分枝中,即
11
,
15
,
19
和
24
行。在每种情况下,都可以看到规则的实现,包括几次对
BinaryTree
或
Stack
的调用。唯一的错误检查在
else
子句中,升起一个
ValueError
异常,应对从列表中得到一个不能识别的字符的情况。
现在分析树已经建起来了,怎样用呢?作为第一个例子,我们写一个函数来求分析树的值,返回计算结果。写这个函数要用到树的层级结构,回头看看图
2
记得我们用图
3
中的简化树代替了原来的树,这提示我们写一个递归算法对子树求值。
以前我们做过递归算法了,这次我们从设计递归的基点开始。树的自然基点是叶子。在分析树中,叶子节点总是操作数,象整数或浮点数之类的数字对象不需要更多操作,所以
evaluate
函数可以直接返回它的值。递归走向基点的的方法是对左右孩子使用
evaluate
函数。
要把两个递归调用的结果合在一起,只需要简单地对这两个结果应用存在父母节点的操作符,在图
3
的例子中,我们可以看到两个孩子自己求值,各得
10
和
3
,对他们应用乘法,得到最终结果
30
递归函数
evaluate
见
linsting 1
。首先,要得到左右孩子的引用,如果左右孩子都是
None
,那么当前节点是叶子。这个检查过程在第
7
行。如果不是叶子,查找当前节点的操作符,并用到它左右孩子的返回值上。
在算法中,使用了字典数据类型,其中键值是
'+', '-', '*'
和
'/'
。数值部分是
python
中
operator
模块的函数。
Operator
模块提供了常用操作符的函数版,这样当我们查找操作符的时候,返回相应的函数。既然是函数,我们可以用函数方式来计算算式。比如我们查找
opers['+'](2,2)
,等价于
operator.add(2,2)
.
Listing 1
def evaluate(parseTree):
opers = {'+':operator.add, '-':operator.sub, '*':operator.mul, '/':operator.truediv}
leftC = parseTree.getLeftChild()
rightC = parseTree.getRightChild()
if leftC and rightC:
fn = opers[parseTree.getRootVal()]
return fn(evaluate(leftC),evaluate(rightC))
else:
return parseTree.getRootVal()
最后,我们用图
4
中的例子来跟踪求值函数
evaluate
。当调用
evaluate
,
,我们把一整个子树作为参数传递过去。然后我们得到左右子树的引用以确认他们是存在的。递归调用发生在第
9
行,开始查找根节点的操作符,这里是
'+'
,它对应的函数是
operator.add
,需要两个参数。象一般的
python
函数一样,它要做的第一件事情就是计算两个参数的函数值。在本例中,两个参数都是对
evaluate
的递归调用。从左到右求值,第一个递归函数得到了左子树,发现这个节点没有孩子,所以是叶子。在叶子节点上,仅仅返回它的数值就可以,这里返回了整数
3
。
此时我们的顶级调用
operator.add
的一个参数已经算出来了,但还没完。继续从左到右的求值,现在求右子树的值,发现它有左右孩子,根值是
*
,再对它的两个孩子调用函数,这时发现它的左右孩子是叶子,分别返回两个整数
4
和
5
,用这两个参数计算
operator.mul(4,5)
。这时,顶级调用
+
的左右子树已经计算出来,这时要计算
operator.add(3,20)
。最终的结果是
23.