一、随机游走问题
1905年,英国统计学家Pearson在《自然》杂志上公开求解随机游走问题(Random Walk Problem):如果一个醉汉走路时每步的方向和大小完全随机,经过一段时间之后,在什么地方找到他的可能性最大?
1921年,匈牙利数学家Polya在研究随机游走问题后,证明了“一维或二维随机游走具有常返性”的随机游走定理,并得出了随机游走的醉汉最终会返回原点的结论。
日本著名数学家角谷静夫通俗形象地将Polya随机游走定理表述为:喝醉的酒鬼总能找到回家的路(A drunk man will eventually find his way home)。因此,随机游走定理也被称为酒鬼回家定理。
2012年,Polya的随机游走定理被《数学之书(The Math Book)》列入数学发展史上最重要的250个里程碑式事件之一。《数学之书》是这样用现代语言描述随机游走问题的,想象一只机器甲虫在一条无限长的水管中随机地向前或向后移动一步,问它最终回到原点的概率是多少?Polya证明:如果不限制机器甲虫在一维空间内随机游走的步数,则机器甲虫最终回到原点的概率等于1。
二、与高尔顿板实验结果不符
高尔顿板是英国生物统计学家高尔顿(Galton)专门设计用来演示一维随机游走及正态分布现象的实验装置(图3) 。
高尔顿板上的每一个圆点表示钉在板上的钉子,钉子之间的距离彼此相等,呈三角形排列,上一层每一颗钉子的位置恰好位于下一层两颗钉子的正中间。
当小球从最上方的入口落下时,小球每次碰到钉子后向左、右两个方向落下的概率各为50%,直到最后落入底部的一个格子内。
小球的下落过程就相当于一维简单随机游走。把大量小球逐个从入口处放下,只要高尔顿板的面积足够大、钉子数量足够多,落在底部格子内的小球将形成与正态分布曲线相似的中间高、两边低的钟形曲线。
如果高尔顿板面积足够大,小球在下落过程中将逐渐向左右两个方向扩散,表明一维随机游走的小球(醉汉或机器甲虫)随时间远离原点。
三、与随机游走模型的数字特征不一致
随机游走是《随机过程》学科中用于描述动态随机现象的一种基本随机过程。液体中悬浮微粒的布朗运动、空气中的烟雾扩散、光纤陀螺的随机游走误差、股票市场的价格波动等动态随机现象均可用随机游走模型进行描述。
《随机过程》教科书给出了一维简单随机游走随机变量的数学模型
式中