ajax实现

function ajax(options){
  options=options||{};

  options.type=options.type||'get';
  options.data=options.data||{};
  options.dataType=options.dataType||'text';

  //不兼容IE6
  let xhr=new XMLHttpRequest();

  //数据组装
  let arr=[];
  for(let name in options.data){
    arr.push(`${encodeURIComponent(name)}=${encodeURIComponent(options.data[name])}`);
  }
  let strData=arr.join('&');

  if(options.type=='post'){
    xhr.open('POST', options.url, true);
    xhr.setRequestHeader('content-type', 'application/x-www-form-urlencoded');
    xhr.send(strData);
  }else{
    xhr.open('GET', options.url+'?'+strData, true);
    xhr.send();
  }

  //接收
  xhr.onreadystatechange=function (){
    //4——完事
    if(xhr.readyState==4){
      //成功——2xx、304
      if(xhr.status>=200 && xhr.status<300 || xhr.status==304){
        let data=xhr.responseText;

        switch(options.dataType){
          case 'json':
            if(window.JSON && JSON.parse){
              data=JSON.parse(data);
            }else{
              data=eval('('+str+')');
            }
            break;
          case 'xml':
            data=xhr.responseXML;
            break;
        }

        options.success && options.success(data);
      }else{
        options.error && options.error();
      }
    }
  };
}
<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8">
    <title></title>
    <script src="js/ajax.js" charset="utf-8"></script>
    <script>
    window.onload=function (){
      let oBtn=document.getElementById('btn1');

      oBtn.onclick=function (){
        /*ajax('1.php', 'get', {a: 12, b: 5}, function (str){
          alert(str);
        }, function (){
          alert('失败');
        });*/

        ajax({
          url: '1.php',
          data: {a: 44, b: 99},
          //dataType: 'json',
          success(data){
            alert(data);
            console.log(data);
          },
          error(){
            alert('错了');
          }
        });
      };
    };
    </script>
  </head>
  <body>
    <input type="button" value="按钮" id="btn1">
  </body>
</html>

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值