


1 剪力滞与箱梁有效宽度
T梁、箱梁、Π行等带肋梁结构在外力作用下产生弯曲内力和变形,通过梁肋的剪切变形传递给翼板。剪应变在向翼板内横向传递的过程中是不均匀的,在梁肋与翼缘板的交接处最大,随着与梁肋距离的增加而逐渐减小,使翼板远离肋板处的纵向位移滞后于肋板边缘处,使弯曲应力的横向分布呈曲线形状(如图1)。
这就与初等梁的弯曲理论所得到的均匀分布的弯曲应力的平截面假定不一致。由翼板的剪切变形而造成的弯曲正应力沿着梁宽度方向不均匀分布。这种现像称为“剪力滞(后)效应(shear-lag effect)”。而这个应力峰值通常大于我们按初等梁理论计算出来的值。早在二十世纪初就有人进行这方面的研究,认为剪力滞后效应可能导致钢箱梁截面的严重破坏。因此工程设计人员提出了“有效宽度”的概念,即将翼缘实际宽度按某个系数或者某种规律折减为计算宽度,使折减后的宽度按初等梁理论算得的应力值和实际的峰值接近,以确保结构的安全。

2 有效宽度的几何计算方法
有效分布宽度问题, 实质上是以剪力滞理论为基础。用精确的理论来分析翼缘应力的不均匀分布规律是比较复杂的, 尤其不便于工程中的应用。为了既能利用简单的初等梁理论公式, 又能得到接近于翼缘实际应力的最大值, 便提出“翼缘有效宽度”的概念,并且由T.V.卡曼首先解决, 一直沿用至今。翼缘有效宽度的简单定义是按初等梁理论的公式也能算得与真实应力峰值接近相等的那个翼缘折算宽度。它的几何解释是:如图二中的真实应力峰值σmax为高度的阴影矩形面积等于真实的应力曲线所包围的面积,即阴影线矩形面积的边长,便是翼缘的有效宽度,数学表达式为:
式中:be为每侧翼缘的有效宽度,b为每侧翼缘的净宽度,t为翼缘的厚度,σmax为腹板与翼板连接处的应力峰值,x为沿跨长方向的坐标,y为沿横截面宽度方向的坐标。
从式中可知, 翼缘有效宽度是根据翼缘内的应力体积与折算截面的翼缘内应力体积相等的原理换算得来的。有效宽度与实际宽度之比称为有效宽度比, 即φ=be/b, 它反映翼板应力分布的不均匀程度。因此, 工程设计应该采用这一折减后的截面抗弯模量, 按初等梁的弯曲理论去计算其纵向弯曲应力与挠度。
从上所述, 要确定箱梁翼缘的有效宽度, 必须事先准确获得沿翼缘分布的应力函数
σ(x,y)。目前, 关于这个问题的分析方法主要有① 以有限条法为基础的数值解法;② 以折板理论为基础的经典解析法;③ 以简化结构图式为基础的比拟杆法;④ 以能量原理为基础的变分法。用这些方法计算等截面箱梁的翼缘应力, 具有方便、适应性好的特点, 许多学者都以这些方法为理论依据来确定有效宽度。
根据上述原理, 学着们发现了翼缘宽度和梁跨之比、支撑条件、截面形状和尺寸、截面材料、截面在跨内所处位置等对有效宽度的影响规律, 并编制了有效宽度的实用计算方法。其中《德国规范(DIN1075)》就是比较通用的一种方法,我国《公路钢筋混凝土及预应力混凝土桥涵设计规范》中对有效宽度计算的条文就是借鉴其而来的。