分类型变量python聚类分析_用python对包含分类变量和数值变量的数据进行聚类的最佳方法是什么...

本文探讨如何使用Python对包含分类和数值变量的客户数据进行聚类分析。作者尝试了标准尺度缩放后的Mclust,但遇到了问题。接着,他们通过K-means和不同聚类方法进行实验,包括KMeans、AgglomerativeClustering、AffinityPropagation以及GaussianMixture。通过Elbow方法选择K值,并展示了K-means聚类结果的散点图。
摘要由CSDN通过智能技术生成

我需要聚类客户数据,包含分类和数字特征。数字特征不在同一范围内(年龄、收入……)。在我用标准刻度缩放后,我尝试了Mclust来获取数值数据,但这给了我交叉的组。在

1-如果标准量表的结果不令人满意,我是否应该标准化?

2-K-Prototype集群的最佳方式是什么?

3-聚类方法是否应该依赖于数据分布?在

我用熊猫

我用的是:#K-mean Cluster#search K

from scipy.spatial import distance as sci_distance

from sklearn import cluster as sk_cluster

cdata = data

K = range(1, 10)

KM = (sk_cluster.KMeans(n_clusters=k).fit(cdata) for k in K)

centroids = (k.cluster_centers_ for k in KM)

D_k = (sci_distance.cdist(cdata, cent, 'euclidean') for cent in centroids)

dist = (np.min(D, axis=1) for D in D_k)

avgWithinSS = [sum(d) / cdata.shape[0] for d in dist]

plt.plot(K, avgWithinSS, 'b*-')

plt.grid(True)

plt.xlabel('Number of clusters')

plt.ylabel('Aver

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值