
本文将给出一些使用解析几何和向量表达的三角形面积公式。我们将三角形放置在二维平面坐标系中, 并设其三点坐标为

我们采用构造已知图形面积的方法来求解未知图形面积的方法,所以我们在坐标系里对三角形ABC三个顶点做x轴和y轴的垂线,于是三角形ABC的面积可以看成是一个矩形面积减去三个周围的小三角形面积S1,S2,S3的差。
即
矩形面积使用底乘高,三角形面积使用底乘高的一半,可得:
代入化简可以得到:
写成二阶行列式的形式就是:

或者写成三阶行列式的形式:

我们称之为解析公式一。
实际上解析公式一是向量积的几何意义的平面形式。空间中两个向量的向量积大小是以这两个向量为邻边的平行四边形的面积。因此空间坐标系下的三角形ABC的面积为:

我们称之为解析公式二。
上面这个向量积的公式,放到平面几何中,实际上就是《三角形的面积公式七叙》中所讨论的三角形中的线段与对边乘积的一半乘以其夹角的正弦值,因为向量积展开就是
我们来求解下面的问题。
已知:在平面直角坐标系中,三角形的三边所在的直线方程分别为:
这个问题看起来非常简单,只需要将三条直线两两联立,求出它们的交点坐标,然后再利用解析公式一就可以了,我们就照着这个思路来求一求。
我们设
再代入解析公式一中,则有:
我们称之为解析公式三。
我们还可以用矩阵运算的方式来推导一下解析公式三。
同样是设三条直线的交点,即三角形的三个顶点坐标为:
由解析公式一,可得
由A,B,C三点在三条直线
又
便有:
于是:
又由
从而
由于我们设定了三条直线是有三个交点的,即这三条直线不平行,且不同时交于一个点,因此上式中的分母行列式的值就不会为0。
如果是空间中的一个三角形,三条边都是空间三维坐标系下的直线方程,同样可以利用类似的方法得到求解,这里就不再赘述了。
总结:对于平面解析几何中计算三角形的面积,由于求解距离的公式比较复杂,运算比较麻烦,所以通常都是求解三点的坐标,使用解析公式一,到了空间坐标系中,才使用解析公式二,解析公式三只有在题设中的已知量情况下才会使用,不过其推导的过程和结果可以供参考。