向量表示 运动抛物线_近年常见的高中抛物线题(和初中知识联系紧密)

本文提供了一系列高中水平的抛物线问题,包括定点问题、弦长公式和阿基米德三角形等,适合福建中考考生。通过解析高考原题和改编题,讲解了利用韦达定理、平面几何和向量方法解题的技巧。文章强调了数形结合、动点设元和恒等变形在解题中的重要性。
摘要由CSDN通过智能技术生成

本文是鄙人分析中考抛物线题型的最后一波大招,之后大概率就不会再更新初中题型啦。

所以,这篇文章,算是我所有剩下的干货吧。

这篇文章是例题文,也就是收录一些高考原题和高考改编题,比较贴近福建省考情。

话不多说,上题上题。

(本文会涉及一些高中概念,有关的一些基础概念详见

热爱代数的好学生:福建抛物线考题(初中)经典图形大赏

部分原题词句因与初中所学内容不同,进行了修改。)

(由于本人是福建宁德人,所以对浙江题目情有独钟,毕竟地理上很接近)

这些题目对于中考来说,难度偏高,不过可以试着做做。

(本文主要面向福建中考考生,有意避免了一些初中不常见的高中解法,比如向量)

(1)

9c1506ecc0ab5f4a7e5894d7c93c0cb9.png
2019全国三卷理科数学

答案:(1)定点:

(2)

解析:这显然是阿基米德三角形问题。

由于涉及切线,故去算这两条切线的解析式。

用判别式法(或用求导)可知,若设

则有

显然

,整理得

也就是

同理也会有

那么就有

,也就是

那么必过定点

第一题不是很难(至少在高考题中,还算比较水)

第二题,我们需要一个公式,也就是在第一篇文章中提到的圆锥曲线弦长公式。

对于抛物线

与直线
而言,如果这两个函数相交,有两个交点,那么这两个交点之间的距离就会是

也就是说,有

而对于任意的一元二次方程来说,它的两根之差为

,也就是

所以弦长公式即为

(d表示距离)

这个公式,请读者自证。

有了这个公式,就比较好做了

联立

(也就是
)与

显然,有

由韦达定理可知

最终化简得到

设D点到直线AB的距离为

,E点到AB距离为

那么就有

不妨设切点为M,则有M为AB中点,根据中点坐标公式得到

根据两直线垂直,其斜率之积为-1,那么就去算EM的解析式。

由题意有

由此我们有一个小问题,就是,题目并没有说t不为0,所以要考虑斜率到底存不存在。

先假设斜率存在,也就是t≠0,

那么有

,解得

代入得到

若不存在,也就是t=0,就有

故综上,

(2)已知抛物线y=x²,
,
,抛物线上有一点
,过B作AP垂线交AP于Q点。

①:求直线AP斜率(k值)的取值范围
②:求
的最大值。

这题是2017年浙江省高考数学的真题

(原题有图,但没什么用处)

答案:①

的最大值为

解析:

那么有

由于

,那么
,也就是

第二题,比较难算。

标准答案是用勾股定理和弦长公式结合,但是那样的计算量我都未必招架得住。

我选择用初中能够理解的平面几何方式。

以AB中点(设此点为M点)为圆心,

长度为半径,作圆。

那么显然这个圆就是

外接圆。

不妨设直线PM交

于D、E两点。则

(这属于初中拓展知识相交弦定理的应用)

由勾股定理显然可分析出

也就是有

这个式子的处理,对于一般的初中生确实比较麻烦,因为它要用到求导。

求导的过程比较麻烦,我就懒得写了,直接得到答案是

(3)已知抛物线
的焦点为F(0,1),过F作直线交抛物线于A、B两点,若直线OA、OB分别交直线
于M、N两点,求
的最小值

答案:

解析:这题本身思路比较简单,主要难度在于计算。

不妨设

那么显然知直线

联立可得

.

由韦达定理得到

同时可得

联立可知

。同理得

由弦长公式可知

最终是一定可以得到

那么显然真正的问题在于求

的最值。

不妨设

则有

由完全平方公式的推论有


也就是

其中

最小时,由均值不等式可知,

此时

也就是有

(这道题是2013年浙江省文科数学高考原题)

(4)已知抛物线
,若有
的三个顶点均在抛物线上,且直角顶点P的横坐标为1,过A、B分别作抛物线的切线,两切线交于Q

①:若直线AB过
,求
点纵坐标。

②:求
的最大值及此时
点坐标。

(这属于阿基米德三角形的性质应用)

(这题是2019年绍兴柯桥区的期末题。)

答案:①

②:

(这题计算量巨大无比,我暂时没算明白,等我算明白之后再更这题,抱歉)

(5)已知抛物线
与x轴相交于
两点,,其中
点位于
点左侧。
是该抛物线位于第一象限上的点,有如下问题:

①:记直线
斜率分别为
,求证:
为定值

②:过
,垂足为D,若D点关于x轴的对称点恰在直线
上,求

答案:①

(这是2017年浙江省学业考试的原题)

解析:显然由题意知

不妨设

.

那么

第二题,需要用到2018年福建中考A卷出现过的一个结论(当然这个属于二级结论)

也就是两条关于坐标轴对称的直线,它们斜率的关系。

关于x轴对称的直线,斜率互为相反数。

所以

因为

,所以

也就是

,得到

由于本人懒得算,我就用向量外积直接计算了,正常做法可以联立算出D点坐标然后求面积。

最终可以算出

(6)已知抛物线
与直线
交于M、N两点,Q为抛物线上异于M、N的任意一点,直线MQ与x轴、y轴分别交于点
。直线
与x轴、y轴分别交于C、D。

①:求M、N两点坐标
②:证明:B、D两点关于原点O对称
③:设
的面积分别为
,若Q在直线
的下方,求
的最小值。

答案:①

②:提示:可从求

表达式入手,算出B、D两点坐标。

③:

解析:第一题太水,不解析。

第二题,不妨设

,可求

显而易见B、D关于原点对称。

第三题


,那么显然


不妨设

时取等. 故为
(7)设点
,直线AM、BM相交于M点,且AM、BM的斜率之差为1,M点以一个固定的轨迹运动,设此轨迹为C,请求出C的解析式

(这题本来有两个小题,考虑到第二小题涉及到高中的圆的标准方程等等知识,故不列出)

(这题是浙江嘉兴的期末考)

答案:

解析:不妨设

。则
,

则有

就有

最终化简得到

(8)已知抛物线
,设原点为O,过抛物线焦点作斜率不为0的直线
,交抛物线于M、N两点,直线
交直线OM、ON于A、B

求证:以AB为直径的圆必过y轴上某定点。

答案:定点坐标为

(是的,它就是过两个定点)

(这是2019北京高考数学题)

解析:不妨设

联立抛物线和直线解析式,有

由韦达定理可知

可得

那么

所以AB中点,也就是圆心坐标为

这也就是直径了,可以得到半径长为

我们需要从圆的定义入手,也就是平面上到某定点距离为定长的点的集合。

所以由勾股定理可知,该圆上任意一点均满足

这是以后会学到的圆的标准方程,但我觉得这个知识,初中学生接受应该并不吃力。

因为点在y轴上,故令x=0,即有

所以

,最终得到必过定点

(这题还可以用圆的直径式方程来解,不过那样也不会太简便,和这种解法差不多,故不列出)

这些题目呢,其实都反映了一些题目的共性,大概有这么几点:

①先用韦达定理把两交点横坐标的关系算出来(两根之和、两根之积、有时要运用到两根之差),然后再进行运算。对于韦达定理的式子要有较高敏感度。

②遇到动点一定去设元,把动点和定点靠上关系,

③需要一定的恒等变形能力,掌握一些课外的知识点,如齐次多项式的十字相乘法分解。有兴趣的话可以接触抛物线的参数方程等等。

④追求数形结合,从几何角度看式子,也许会有新思路。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值