第四季,我们开始介绍一个新的话题:时间序列分析。时间序列分析在金融、气象、交通、宏观经济等诸多领域的应用可以说是非常的广泛。简单点说,时间序列就是在各个时间点上形成的数值序列,而分析的过程就是通过这些数值序列去研究其自身的变化规律。
在python中,时间序列通常使用pandas中的series结构(一个时间点对应一个数值数据)或者dataframe结构(一个时间点对应多个数值数据)来表示,和之前介绍过的series和dataframe结构本质上是一样的,唯一一个重要的不同就是,他的索引数据是时间类型的。
时间类型的数据作为一种特殊的数据形式,和一般的数值类型或者字符串类型相比,要多了不少的讲究。因此在这一小节,我们专门来介绍如何在python中对日期和时间的进行表示,这也是后续时间序列分析的基础。
我们先从python标准库与第三方库入手,介绍其中的日期、时间、时间增量和时间跨度的表示工具。当然了,说实话其实pandas中提供的时间序列工具更适合用来进行相关问题的处理,但是我想从标准库入手,可以帮助我们去搞清楚整个问题的来龙去脉,对我们更好的理解问题和使用工具将大有裨益。
本集要点抢鲜
S04E01 如何基于python进行时间的表示(连载地址见文末)
本集要点1.时间序列分析概述
2.原生工具:datetime和dateutil
3.Numpy中的日期时间表示
4.pandas的时间日期表示
第四季连载地址:张雨萌-酱油哥:【第四季更新】踏上Python数据科学之路zhuanlan.zhihu.com
本季正在持续连载中,敬请关注!