C语言求最大正方形子矩阵,最大子段和||最大子矩阵和||最大全1子矩阵||最大全1子正方形||...

最大子段和

给定n个整数组成的序列A[0,1,…,n-1],求该序列子段的最大和。

算法一

枚举所有可能的左右边界l,r,计算sum[l,...r],算法复杂度为O(n^3)

算法二

sum[l,...r]的值可以由sum[0,...r]-sum[0,...l]得到。在O(n)内我们可以得到sum[0,..,n],这样只有r,l可以变化,算法复杂度为O(n^2),这是典型的空间换时间。

算法三(DP)

我们定义一个最大值dp[i]表示以i结尾的最大子段和,那么初始dp[0]=A[0].关键是求解dp[i]与dp[i-1]的关系

dp[i]=max(dp[i-1]+A[i],A[i])

即A[i]<0时dp[i] = dp[i-1];否则dp[i]=dp[i-1]+A[i]

最大子矩阵和

假设A[M,N]有M行,N列。

我们可以只移动行或只移动列,这里以行为例

行范围的全部遍历是O(n^2)的,i从0~M-1,j从i~N-1。这样行范围就被全部遍历了,A[i,….j;0,….N-1]。对于每一列k(0…N-1)我们相当于将i~j范围的子矩阵压扁,将同一列的元素驾到b[k]中去,在数组b中求最大子段和,这个字段和就是A[i,….j;0,….N-1]这个横条状的数组的最大子矩阵和,当j每移动一次时就更新下MaxSum

int maxSubArray(int a[],int n)

{

int b=0,sum=a[0];

for(int i=0;i

{

if(b>0)

b+=a[i];

else

b=a[i];

if(b>sum)

sum=b;

}

return sum;

}

int maxSubMatrix(int array[][],int M,int N)

{

int i,j,k,max=0,sum=-100000000;

int b[N];

for(i=0;i

{

for(k=0;k

{

b[k]=0;

}

for(j=i;j

{

for(k=0;k

{

b[k]+=array[j][k];

}

max=maxSubArray(b,k); //此时K即为N-1

if(max>sum)

{

sum=max;

}

}

}

return sum;

}

这里的算法复杂度为O(N^3)

最大全1子矩阵

这里与最大子矩阵和的区别是子矩阵内的元素全是1.

输入:

4 4

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

输出:

4

这里假设输入矩阵A为M行,N列,则

1、先将0、1矩阵读入A,对于每一个非零元素A[i][j],将其更新为:在本行,它前面的连续1的个数加一(+1表示算入自身)

for(i = 0; i

for(j = 0; j

A[i][j]=(A[i][j]==0?0:(j==0?0:A[i][j-1]+1));

2、对于每一个非零元素A[i][j],从第j列向上(j-1到0)和向下(j+1到N-1)扫描,直到遇到比A[i][j]小的元素,扫描了y行,则得到一个大小为(y+1)*A[i][j]的全1子矩阵(+1表示自身)

for(up = i;up>=0&&A[i][up]>=A[i][j]; up--);

for(down = i;down=A[i][j];down++);

area = (down-up+1)*A[i][j];

Max_area=(Max_area>area)?Max_area:area;

3、i,j遍历0~N-1,从中挑一个最大值。

思想大概如下图所示(空白处的0没有标出)

0818b9ca8b590ca3270a3433284dd417.png

对照步骤2中给出的例子,蓝色的箭头表示向上向下扫描,黑色的框表示最终得到的全1子矩阵

这样做为什么是对的?

想一想,对那个最大的全1子矩阵,用这种方法能不能找到它呢?——肯定可以。

一个最大全1子矩阵,肯定是四个边界中的每一个都不能再扩展了,如下图

0818b9ca8b590ca3270a3433284dd417.png

int maximalRectangle(vector>& matrix) {

int H = matrix.size(); if(H <= 0) return 0;

int W = matrix[0].size(); if(W <= 0) return 0;

int left[H][W]; int i, j, k, MaxArea = 0, area = 0;

for(i = 0; i < H; ++i)

for(j = 0; j < W; ++j)

left[i][j] = (matrix[i][j] == '0' ? 0 : (j == 0 ? 0 : left[i][j-1]) + 1);

for(i = 0; i < H; ++i){

for(j = 0; j < W; ++j){

if(left[i][j] == 0) continue;

for(k = i-1, area = left[i][j]; k >= 0 && left[k][j] >= left[i][j]; --k, area += left[i][j]);

for(k = i+1; k < H && left[k][j] >= left[i][j]; ++k, area += left[i][j]);

MaxArea = max(MaxArea, area);

}

}

return MaxArea;

}

最大全1子正方形

DP的思路,我们假设f(i,j)表示的是以i,j为右下角顶点的最大子正方形的边长。

这样初始条件f(0,j) f(i,0)即第一行和第一列分别都是自己的值

递推关系如果f(i,j)本身为0,则不用更新(说明以ij为右下角顶点的最大子正方形的边长为0),如果f(i,j)==1,则f(i,j)更新为min(f(i-1,j),f(i,j-1),f(i-1,j-1))+1

for(int i=1; i

for(int j=1; j

if(matrix[i][j]=='0') d[i][j]=0;

else {

d[i][j] = Math.min( Math.min( d[i-1][j], d[i][j-1]), d[i-1][j-1] ) + 1;

max = Math.max(max, d[i][j]);

}

}

}

return max*max;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值